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Abstract

Sortition is an age-old democratic paradigm, widely manifested today through the
random selection of citizens’ assemblies. Recently-deployed algorithms select as-
semblies maximally fairly, meaning that subject to demographic quotas, they give
all potential participants as equal a chance as possible of being chosen. While
these fairness gains can bolster the legitimacy of citizens’ assemblies and facili-
tate their uptake, existing algorithms remain limited by their lack of transparency.
To overcome this hurdle, in this work we focus on panel selection by uniform
lottery, which is easy to realize in an observable way. By this approach, the final
assembly is selected by uniformly sampling some pre-selected set of m possible
assemblies. We provide theoretical guarantees on the fairness attainable via this
type of uniform lottery, as compared to the existing maximally fair but opaque al-
gorithms, for two different fairness objectives. We complement these results with
experiments on real-world instances that demonstrate the viability of the uniform
lottery approach as a method of selecting assemblies both fairly and transparently.

1 Introduction

In a Citizens’ Assembly, a panel of randomly-chosen citizens is convened to deliberate and ulti-
mately make a recommendation on a policy issue. The defining aspect of citizens’ assemblies is the
randomness of the process, sortition, by which their participants are chosen. In practice, the sorti-
tion process works as follows: first, volunteers are solicited via thousands of letters or phone calls,
which target households chosen uniformly at random. Those who respond affirmatively form the
pool of volunteers, from which the final panel will be chosen. Then, a selection algorithm is used
to randomly select some pre-specified number k of pool members for the panel. To ensure adequate
representation of demographic groups, the chosen panel must satisfy some upper and lower quotas
on orthogonal feature categories, such as age, gender, and ethnicity. We call such a panel a feasible
panel. As this process illustrates, citizens’ assemblies offer a way to involve the public in informed
decision-making. As a result of this unique property, over the past decades, citizens’ assemblies
have been gaining momentum globally, even being commissioned by governments and leading to
policy changes at the national level [ICAP19, OEC20, FGG+21].

Prompted by the growing impact of citizens’ assemblies, there has been a recent flurry of computer
scientific research on sortition, and in particular, on the fairness of the procedure by which partic-
ipants are chosen [BGP19, FGGP20, FGG+21]. The most practicable result to date is a family of
selection algorithms proposed by Flanigan et al. [FGG+21], which are distinguished from their pre-
decessors by their use of randomness toward the goal of fairness: while previously-used algorithms
selected pool members in a random but ad-hoc fashion, these new algorithms are maximally fair, en-
suring that pool members have as equal probability as possible of being chosen for the panel, subject
to the quotas.1 To encompass the many interpretations of “as equal as possible,” these algorithms
permit the optimization of any fairness objective with certain convexity properties. There is now a
publicly available implementation of Flanigan et al.’s techniques, called Panelot, which optimizes
the egalitarian notion that no pool member has too little selection probability via the Leximin objec-

1Quotas can preclude giving individuals exactly equal probabilities: if the panel must be 1/2 men, 1/2
women but the pool is split 3/4 men, 1/4 women, then some women must be chosen more often than some men.



tive from Fair Division [Mou03, FGG+20]. This algorithm has already been deployed by several
groups of panel organizers, and has been used to select dozens of panels worldwide.

Fairness gains in the panel selection process can lend legitimacy to citizens’ assemblies and poten-
tially increase their adoption, but only insofar as the public trusts that these gains are truly being
realized. Currently, the potential for public trust in the panel selection process is limited by multiple
factors. First, even the latest panel selection algorithms are most conducive to selecting the final
panel via behind-the-scenes computation. When panels are selected in this manner, people cannot
even verify that every pool member has any chance of being chosen for the panel. A second and
more fundamental hurdle is that randomness and probability, which are so central to the sortition
process, have been shown in many contexts to be difficult for people to understand and reason about
[RB08, MP16, WML20]. Aiming to address these shortcomings, we define and pursue the following
notion of transparency in panel selection:

Transparency: Onlookers should be able to, without reasoning in-depth about
probability, (1) understand the probabilities with which each individual will be
chosen for the panel in theory, and (2) verify that individuals are actually selected
with these probabilities in practice.

In this paper, we aim to achieve transparency and fairness simultaneously: this means advancing
the defined goal of transparency, while preserving the fairness gains introduced by maximally fair
selection algorithms. Although this task is reminiscent of existing AI research on trade-offs between
fairness or transparency with other desirable objectives [BFT12, FKL16, BHJ+18, TBG+20], to our
knowledge, this is one of the first investigations of the trade-off between fairness and transparency.

Setting aside for a moment the goal of fairness, we consider a method of random decision-making
that is already common in the public sphere: the uniform lottery. To satisfy quotas, a uniform lottery
for sortition must randomize not over individuals, but over entire feasible panels. In fact, this ap-
proach has been suggested by practitioners, and was even used in 2020 to select a citizens’ assembly
in Michigan. The following example, which closely mirrors that real-world pilot,2 illustrates that
panel selection via uniform lottery is naturally consistent with the transparency notion we pursue.

Suppose we construct 1000 feasible panels from a pool (possibly with duplicates), numbered 000-
999, and publish an (anonymized) list of which pool members are on each panel. We then inform
spectators that we will choose each panel with equal probability. This satisfies criterion (1): spec-
tators can easily understand that all panels will be chosen with the same probability of 1/1000,
and with only slightly more reasoning, they can observe each individual’s selection probabilities by
counting the number of panels containing them. To satisfy criterion (2), we enact the lottery by
drawing each of the 3 digits of the final panel number individually from lottery machines. Lottery
spectators can watch each ball be drawn with equal probability, providing confirmation that panels
are indeed being chosen with uniform probabilities (and thus confirming the enactment of the pro-
posed individual selection probabilities). In addition to be mainstream, decision-making via drawing
lottery balls invites an exciting spectacle, which can promote engagement with citizens’ assemblies.

This simple method neatly satisfies our transparency criteria, but it has one obvious downside: a
uniform lottery over an arbitrary set of feasible panels does not guarantee any measure of equal
probabilities to individuals. In fact, it is not even clear that the fairest possible uniform lottery over
m panels, where m is a number conducive to selection by physical lottery (e.g. m =1000), would
not be significantly less fair than maximally fair algorithms. For example, if m is too small, there
may be no uniform lottery which gives all individuals non-zero selection probability, even if each
individual appears on some feasible panel.

Fortunately, empirical evidence suggests that there is hope: in the 2020 pilot mentioned above, a
uniform lottery over m =1000 panels was found that nearly matched the fairness of the maximally
fair distribution generated by Panelot. Motivated by this anecdotal evidence, we aim to understand
whether such a fair uniform lottery is guaranteed to exist in general, and if it does, how to find it.
We summarize this goal in the following research questions:

2Of By For’s pilot of live panel selection via lottery can be viewed at https://vimeo.com/458304880#t=
17m59s from 17:59 to 21:23. For a more detailed description, see Figure 3 and surrounding text in [FGG+21].
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Does there exist a uniform lottery overm panels that nearly preserves the fairness
of the maximally fair unconstrained distribution over panels? And,
Algorithmically, how do we compute such a uniform lottery?

Results and contributions. After describing the model in Section 2, in Section 3 we prove that it
is possible to round an (essentially) arbitrary distribution over panels to a uniform lottery while pre-
serving all individuals’ selection probabilities up to only a small bounded deviation. These results
use tools from discrepancy theory and randomized rounding. Intuitively, this bounded change in
selection probabilities implies bounded losses in fairness; we formalize this intuition in Section 4,
showing that there exists in general a uniform lottery that is nearly maximally fair, with respect to
multiple fairness objectives. Although we would ideally like to give such bounds for the Leximin
fairness objective due to its use practice, this objective cannot be summarized by a single expres-
sion. Thus, we give bounds for the closely-related egalitarian objective, Maximin [CELM07]. We
additionally give upper bounds on the loss in Nash Welfare [Mou03], a similarly well-established
fairness objective that has also been implemented in panel selection tools [HG20].

Finally, in Section 5, we consider the algorithmic question: given a maximally fair distribution over
panels, can we find a near-maximally fair uniform lottery, as our bounds suggest should exist? To
answer this question, we implement two standard rounding algorithms, along with near-optimal (but
more computationally-intensive) integer programming methods, for finding uniform lotteries. We
then evaluate the performance of these algorithms in 11 real-world panel selection instances. We find
that in all instances, we can compute uniform lotteries that nearly exactly preserve not only fairness
with respect to both objectives, but entire sets of Leximin-optimal marginals, meaning that from the
perspective of individuals, there is essentially no difference between using a uniform lottery versus
the optimal distribution used by the latest algorithms. We discuss these results, their implications,
and how they can be deployed directly into the existing panel selection pipeline in Section 6.

2 Model

Panel Selection Problem. First, we formally define the task of panel selection for citizens’ assem-
blies. Let N = [n] be the pool of volunteers for the panel—individuals from the population who
have indicated their willingness to participate in response to an invitation. Let F = {ft}t denote a
fixed set of features of interest. Each feature ft : N → Ωt maps each pool member to their value
of that feature, where Ωt is the set of ft’s possible values. For example, for feature ft = “gender”,
we might have Ωt = {“male”,“female”, “non-binary”}. We define individual i’s feature vector
F (i) = (ft(i))t ∈

∏
t Ωt to be the vector encoding their values for all features in F .

As is done in practice and in previous research [FGGP20, FGG+21], we impose that the chosen
panel P must be a subset of the pool of size k, and must be representative of the broader population
with respect to the features in F . This representativeness is imposed via quotas: for each feature f
and corresponding value v ∈ Ω, we may have lower and upper quotas lf,v and uf,v. These quotas
require that the panel contain between lf,v and uf,v individuals i such that f(i) = v.

In terms of these parameters, we define an instance of the panel selection problem as: given
(N, k, F, l, u)—a pool, panel size, set of features, and sets of lower and upper quotas—randomly
select a feasible panel, where a feasible panel is any set of individuals P from the collection K:

K :=
{
P ∈ (N

k) : lf,v ≤ |{i ∈ P : f(i) = v}| ≤ uf,v for all f, v
}
.

Maximally Fair Selection Algorithms. A selection algorithm is a procedure that solves instances
of the panel selection problem. A selection algorithm’s level of fairness on a given instance is
determined by its panel distribution p, the (possibly implicit) distribution over K from which it
draws the final panel. Because we care about fairness to individuals, we evaluate the fairness of p in
terms of the individual selection probabilities, or marginals, that p implies.3 We denote the vector of
marginals implied by p as π, and we will sometimes specify a panel distribution as p, π to explicitly
denote this pair. We say that π is realizable if it is implied by some valid panel distribution p.

Maximally fair selection algorithms are those which solve the panel selection problem by sampling
a specifically chosen p: one which implies marginals π that allocate probability as fairly as possible

3Any distribution over panels p implies a selection probability for each pool members: A pool member’s
selection probability, per p, is equal to the probability of drawing a panel from p containing that pool member.
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across pool members. The fairness of p, π, is measured by a fairness objective F , which maps
an allocation—in this case, of selection probability to pool members—to a real number measuring
the allocation’s fairness. Fixing an instance, a fairness objective F , and a panel distribution p, we
express the fairness of p as F(p). Existing maximally fair selection algorithms can maximize a wide
range of fairness objectives, including the three we consider in this paper.

Leximin, Maximin, and Nash Welfare. Of the three fairness objectives we consider in this paper,
Maximin and Nash Welfare (NW) have succinct formulae. For p, π they are defined as follows,
where πi is the marginal of individual i:

Maximin(p) := min
i∈N

πi, NW(p) :=

(∏
i

πi

)1/n

.

Intuitively, NW maximizes the geometric mean, prioritizing the marginal πi of each individual i in
proportion to π−1

i . Maximin maximizes the marginal probability of the individual least likely to be
selected. Finally, Leximin is a refinement of Maximin, and is defined by the following algorithm:
first, optimize Maximin; then, fixing the minimum marginal as a lower bound on any marginal,
maximize the second-lowest marginal; and so on.

Our setting. In this paper, we studym-uniform panel distributions p̄—distributions overK in which
all probabilities are multiples of 1/m. Formally, while an unconstrained panel distribution p lies in
D := {p ∈ R|K|+ : ||p||1 = 1}, “uniform lotteries” p̄ for fixed m lie in D := {p̄ ∈ (Z+/m)|K| :
||p̄||1 = 1}. In particular, for each aforementioned objective F , we want to study the existence
and construction of a uniform distribution p̄ that is nearly as fair as p∗ ∈ arg maxp∈D F(p), the
maximally fair unconstrained distribution, which is sampled by existing maximally fair selection
algorithms. To measure the extent to which such a lottery p̄ is achievable, we define the fairness loss
between two panel distributions p, p̄ as F(p)−F(p̄). We ultimately bound the fairness loss by first
bounding the marginal discrepancy, which we define for π, π̄ as ||π − π̄||∞.

3 Theoretical Bounds on Marginal Discrepancy

Here we prove that for a fixed panel distribution p, π, there exist uniform lotteries p̄, π̄ such that
||π − π̄||∞ is bounded. Preliminarily, we note that it is intuitive that bounds on this discrepancy
should approach 0 as m becomes large with respect to n and k. To see why, begin by fixing some
distribution p, π over panels: as m becomes large, we approach the scenario in which a uniform
lottery p̄ can assign panels arbitrary probabilities, providing increasingly close approximations to p.
Then, since the marginals πi are continuous with respect to p, as p̄ → p we have that π̄i → πi for
all i.

While this argument demonstrates convergence, it provides neither efficient algorithms nor tight
bounds on the rate of convergence. In this section, our task is therefore to bound the rate of this
convergence as a function of m and the other parameters of the instance. All omitted proofs of
results from this section are included in Appendix B.

3.1 Worst-Case Upper Bounds

Our first set of upper bounds result from rounding STANDARD LP, the LP that most naturally arises
from our problem. This LP is defined in terms of a panel distribution p, π, and M , an n×|K|matrix
describing which individuals are on which feasible panels, i.e., Mi,P = 1 if i ∈ P and Mi,P = 0
otherwise.

STANDARD LP Mp = π (3.1)
||p||1 = 1 (3.2)

p ≥ 0.

Here, (3.1) specifies n total constraints. Our goal is to round p to a uniform lottery p̄ over m panels
(so the entries p̄ are multiples of 1/m) such that (3.2) is maintained exactly, and no constraint in
(3.1) is relaxed by too much, i.e., ||Mp−Mp̄||∞ = ||π − π̄||∞ remains small.

Randomized rounding is a natural first approach. Any randomized rounding scheme satisfying neg-
ative association (which includes several that respect (3.2)) yields the following bound:
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Theorem 3.1. For any realizable π, we may efficiently randomly generate p̄ such that its marginals
π̄ satisfy

||π − π̄||∞ = O

(√
n log n

m

)
.

Fortunately, there is potential for improvement: randomized rounding does not make full use of the
fact that M is k-column sparse, due to each panel in K containing exactly k individuals. We use this
sparsity to get a stronger bound for the practically significant parameter regime n� k2. The proof
applies a dependent rounding algorithm based on a theorem of Beck and Fiala [BF81], to which a
modification ensures the exact satisfaction of constraint (3.2).
Theorem 3.2. For any realizable π, we may efficiently construct p̄ such that its marginals π̄ satisfy

||π − π̄||∞ ≤ k/m.

3.2 Beyond-Worst-Case Upper Bounds

As we will demonstrate in Section 3.3, we cannot hope for a better worst-case upper bound than
poly(k)/m. We thus shift our consideration to instances which are “simple” in their feature struc-
ture, having a small number of features (Theorem B.5), a limited number of unique feature vectors
in the pool (Theorem 3.3), or multiple individuals that share each feature vector present (Theo-
rem B.6). The beyond-worst-case bounds given by Theorem 3.3 and Theorem B.6 asymptotically
dominate our worst-case bounds in Theorem 3.1 and Theorem 3.2, respectively. Moreover, Theo-
rem 3.3 dominates all other upper bounds in 10 of the 11 practical instances studied in Section 5.

We note that while our worst-case upper bounds implied the near-preservation of any realizable
set of marginals π, some of our beyond-worst-case results apply to only realizable π which are
anonymous, meaning that πi are equal for all i with equal feature vectors. We contend that any
reasonable set of marginals should have this property,4 and furthermore that the “anonymization” of
any realizable π is also realizable (Claim B.4); hence this restriction is insignificant. Our beyond-
worst-case bounds also differ from our worst-case bounds in that they depart from the paradigm of
rounding p, instead randomizing over panels that may fall outside the support of p.

The main beyond-worst-case bound we give, stated below, is parameterized by |C|, where C is the
set of unique feature vectors that appear in the pool. All omitted proofs and other beyond worst-case
results are stated and proven in Appendix B.
Theorem 3.3. If π is anonymous and realizable, then we may efficiently construct p̄ such that its
marginals π̄ satisfy

||π − π̄||∞ = O

(√
|C| log |C|
m

)
.

|C| is at most n, so this bound dominates Theorem 3.1. In 10 of the 11 real-world instances we study,
|C| is also smaller than k2 (Appendix A), in which case this bound also dominates Theorem 3.2.

At a high level, our beyond-worst-case upper bounds are obtained not by rounding p, but instead
using the structure of the sortition instance to abstract the problem into one about “types.” For
this bound we then solve an LP in terms of “types,” round that LP, and then reconstruct a rounded
panel distribution p̄, π̄ from the “type” solution. In particular, the types of individuals are the feature
vectors which appear in the pool, and types of panels are the multisets of k feature vectors that
satisfy the instance quotas. Fixing an instance, we project some p into type space by viewing it as a
distribution p over types of panels K, inducing marginals τc for each type individuals c ∈ C.

In order to solve and round, we define the TYPE LP, which is analogous to Eq. (3.1). We let Q be
the type analog of M , so that entry Qcj is the number of individuals i with F (i) = c contained in
panels of type j ∈ K.5 Then,
TYPE LP Q p = τ (3.3)

||p||1 = 1 (3.4)
p ≥ 0.

4The class of all anonymous marginals π includes the maximizers π∗ of all reasonable fairness objectives,
and second, this condition is satisfied by all existing selection algorithms used in practice, to our knowledge.

5Completing the analogy, C,K, Q, p, p̄, τ are the “type” versions of N,K,M, p, p̄, π from the original LP.
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We round p in this LP to a panel type distribution p̄ while preserving (3.4). All that remains, then, is
to construct some p̄, π̄ such that p is consistent with p̄ and ||π − π̄||∞ is small. This p̄ is in general
supported by panels outside of supp(p), unlike the p̄ obtained by Theorem 3.1. It is the anonymity
of π which allows us to construct these new panels and prove that they are feasible for the instance.

3.3 Lower Bounds

This method of using bounded discrepancy to derive nearly fairness-optimal uniform lotteries has
its limits, since there are even sparse M and fractional x for which no integer x̄ yields nearby Mx̄.
In the worst case, we establish lower bounds by modifying those of Beck and Fiala [Spe85]:
Theorem 3.4. There exist p, π for which for all uniform lotteries p̄, π̄,

min
p̄∈D
||π − π̄||∞ = Ω

(√
k

m

)
.

Our k-dependent upper and lower bounds are separated by a factor of
√
k, matching the current

upper and lower bounds of the Beck-Fiala conjecture as applied to linear discrepancy (also known
as the lattice approximation problem [Sri97]). The respective gaps are incomparable, however, since
for a given x ∈ [0, 1]n, the former problem aims to minimize ||M(x−x̄)||∞ over x̄ ∈ {0, 1}n, while
we aim to do the same over the x̄ ∈ Zn for which

∑
j xj =

∑
j x̄j (Lemma B.2).

4 Theoretical Bounds on Fairness Loss

Since the fairness of a distribution p is determined by its marginals π, it is intuitive that if uniform
lotteries incur only small marginal discrepancy (per Section 3), then they should also incur only
small fairness losses. This should hold for any fairness notion that is sufficiently “smooth” (i.e.,
doesn’t change too quickly with changing marginals) in the vicinity of p, π.

Although our bounds from Section 3 apply to any reasonable initial distribution p, we are particu-
larly concerned with bounding fairness loss from maximally fair initial distributions p∗. Here, we
specifically consider such p∗ that are optimal with respect to Maximin and NW. We note that, since
there exist anonymous p∗, π∗ that maximize these objectives, we can apply any upper bound from
Section 3 to upper bound ||π∗ − π̄||∞ (for any π̄). We defer omitted proofs to Appendix C.

4.1 Maximin

Since Leximin is the objective optimized in practice, it would be most natural start with a p∗ that
is Leximin-optimal and bound loss with respect to this objective. However, the fact that Leximin
fairness cannot be summarized by a single expression prevents us from formulating such a bound.
Thus, we first pursue bounds on the closely-related objective, Maximin. We note that smallest
marginal given by Leximin is in general not attained by any uniform lottery p̄, and so in the most
meaningful sense, a worst-case Maximin guarantee is a Leximin guarantee.

First, we show there exists some p̄, π̄ that gives bounded Maximin loss from p∗, π∗, the Maximin-
optimal unconstrained distribution. This bound follows from Theorems 3.2 and B.6, using the simple
observation that p̄ can decrease the lowest marginal given by p∗ by no more than ||π∗ − π̄||∞. Here
nmin := minc nc denotes the smallest number of individuals which share any feature vector c ∈ C.
Corollary 4.1. By Theorem 3.2 and Theorem 3.3, for Maximin-optimal p∗, there exists a uniform
lottery p̄ that satisfies

Maximin(p∗)−Maximin(p̄) =
1

m
·O
(

min

{√
|C| log |C|, k

nmin
+ 1

})
.

Theorem 3.4 demonstrates that we cannot get an upper bound on Maxmin loss stronger than
O(
√
k/m) using a uniform bound on changes in all πi. However, since Maximin is concerned

only with the smallest πi, it seems plausible that better upper bounds on Maximin loss could re-
sult from rounding π while tightly controlling only losses in the smallest πi’s, while giving freer
reign to larger marginals. We show that this is not the case by further modifying the instances from
Theorem 3.4 to obtain the following lower bound on the Maximin loss:
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Theorem 4.1. There exists a Maximin-optimal p∗ such that, for all uniform lotteries p̄,

Maximin(p∗)−Maximin(p̄) = Ω

(√
k

m

)
.

4.2 Nash Welfare

As NW has also garnered interest by practitioners and is applicable in practice [HG20], we upper-
bound the NW fairness loss. Unlike Maximin loss, an upper bound on NW loss does not immedi-
ately follow from one on ||π − π̄||∞, because decreases in smaller marginals have larger negative
impact on the NW. As a result, the upper bound on NW resulting from Section 3 is slightly weaker
than that on Maximin:
Theorem 4.2. For NW-optimal p∗, there exists a uniform lottery p̄ that satisfies

NW(p∗)−NW(p̄) =
k

m
·O
(

min

{√
|C| log |C|, k

nmin
+ 1

})
.

We give an overview of the proof of Theorem 4.2. To begin, fix a NW-optimizing panel distribution
p∗, π∗. Before applying our upper bounds on marginal discrepancy from Section 3, we must contend
with the fact that if this bounded loss is suffered by already-tiny marginals, the NW may decrease
substantially or even go to 0. Thus, we first prove Lemmas 4.1 and 4.2, which together imply that
no marginal in π∗ is smaller than 1/n.
Lemma 4.1. For NW-optimal p∗ over a support of panels supp(p∗), there exists a constant λ ∈ R+

such that, for all P ∈ supp(p∗),
∑
i∈P 1/π∗i = λ.

Lemma 4.2. For Nash-Welfare optimal p∗, π∗, we have that π∗i ≥ 1/n for all i ∈ N .

Lemma 4.1 follows from the fact that the partial derivative of NW with respect to the probability it
assigns a given panel must be the same as that with respect to any other panel at p∗ (otherwise, mass
in the distribution could be shifted to increase the NW). Lemma 4.2 then follows by the additional
observation that EP∼p∗

[∑
i∈P 1/π∗i

]
= n.

Finally Lemma 4.3 follows from the fact that Lemma 4.2 limits the potential multiplicative, and
therefore additive, impact on the NW of decreasing any marginal by ||π − π̄||∞:
Lemma 4.3. For NW-optimal p∗, π∗, there exists a uniform lottery p̄, π̄ that satisfies NW(p∗) −
NW(p̄) ≤ k ||π∗ − π̄||∞.

As the NW-optimal marginals π∗ are anonymous, we can apply the upper bounds given by Theo-
rem 3.3 and Theorem B.6 to show the existence of a p̄, π̄ satisfying the claim of the theorem.

5 Practical Algorithms for Computing Fair Uniform Lotteries

Algorithms. First, we implement versions of two existing rounding algorithms, which are implicit
in our worst-case upper bounds.6 The first is Pipage rounding [GKPS06], or PIPAGE, a randomized
rounding scheme satisfying negative association [DJR07]. The second is BECK-FIALA, the depen-
dent rounding scheme used in the proof of Theorem 3.2. To benchmark these algorithms against the
highest level of fairness they could possibly achieve, we use integer programming (IP) to compute
the fairest possible uniform lotteries over supp(p∗), the panels over which p∗ randomizes.7 We
define IP-MAXIMIN and IP-NW to find uniform lotteries over supp(p∗) maximizing Maximin and
NW, respectively. We remark that the performance of these IPs is still subject to our theoretical
upper and lower bounds. We provide implementation details in Appendix D.1.

One question is whether we should prefer the IPs or the rounding algorithms for real-world ap-
plications. Although IP-MAXIMIN appears to find good solutions at practicable speeds, IP-NW

6We do not implement the algorithm implicit in Theorem 3.3 because our results already present sufficient
alternatives for finding excellent uniform lotteries in practice.

7Note that these lotteries are not necessarily universally optimal, as they can randomize over only supp(p∗);
conceivably, one could find a fairer uniform lottery by also randomizing over panels not in supp(p∗). However,
PIPAGE and BECK-FIALA are also restricted in this way, and thus must be weakly dominated by the IP.
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Figure 1: m = 1000. Shaded regions extend from Maximin(p∗), the fairness of the optimal uncon-
strained distribution, down to the minimum fairness implied by the tightest theoretical upper bound
in that instance (in all instances but “obf” Theorem 3.3 is tightest). Each algorithm or bound’s loss
relative to Maximin(p∗) is written above in the corresponding color. PIPAGE Maximin values are
the average of 1000 runs (max standard deviation across instances was < 10e-17).

converges to optimality prohibitively slowly in some instances (see Appendix D.2 for runtimes).
At the same time, we find that our simpler rounding algorithms give near-optimal uniform lotter-
ies with respect to both fairness objectives. Also in favor of simpler rounding algorithms, many
randomized rounding procedures (including Pipage rounding) have the advantage that they exactly
preserve marginals over the combined steps of randomly rounding to a uniform lottery and then
randomly sampling it—a guarantee that is much more challenging to achieve with IPs.

Uniform lotteries nearly exactly preserve Maximin, Nash Welfare fairness. We first measure the
fairness of uniform lotteries produced by these algorithms in 11 real-world panel selection instances
from 7 different organizations worldwide (instance details in Appendix A). In all experiments, we
generate a lottery of sizem = 1000. This is fairly small; it requires drawing only 3 balls from lottery
machines, and in one instance we have that m < n. We nevertheless see excellent performance of
all algorithms, and note that this performance will only improve with larger m.

Figure 1 shows the Maximin fairness of the uniform lottery computed by PIPAGE, BECK-FIALA,
and IP-MAXIMIN for each instance. For intuition, recall that the level of Maximin fairness given
by any lottery is exactly the minimum marginal assigned to any individual by that lottery. The upper
edges of the gray boxes in Fig. 1 correspond to the optimal fairness attained by an unconstrained
distribution p∗. These experiments reveal that the cost of transparency to Maximin-fairness is prac-
tically non-existent: across instances, the uniform lottery computed by IP-MAXIMIN decreases the
minimum marginal by at most 2.1/m, amounting to a loss of no more than 0.0021 in the minimum
marginal probability in any instance. Visually, we can see that this loss is negligible relative to the
original magnitude of even the smallest marginals given by p∗. Surprisingly, though PIPAGE and
BECK-FIALA do not aim to optimize any fairness objective, they achieve only slightly larger losses
in Maximin fairness, with PIPAGE outperforming BECK-FIALA. Finally, the heights of the gray
boxes indicate that our theoretical bounds are often meaningful in practice, giving lower bounds on
Maximin fairness well above zero in 9 out of 11 instances. We note these bounds only tighten with
larger m. We present similarly encouraging results on NW loss in Appendix D.3.

Uniform lotteries nearly preserve all Leximin marginals. We still remain one step away from
practice: our examination of Maximin does not address whether uniform lotteries can attain the
finer-tuned fairness properties of the Leximin-optimal distributions currently used in practice. Fortu-
nately, our results from Section 3 imply the existence of a uniform lottery that closely approximates
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Figure 2: Instance = sf(a), m = 1000. Line plot shows the Leximin-optimal marginals π∗, along
with marginals given by all algorithms sorted according to π∗. Note that each x coordinate then
corresponds to an individual. The zoomed box shows the magnitude of marginal discrepancy around
π∗. The surrounding shaded region shows the tightest theoretical bound on the marginal discrepancy,
in this case from Theorem 3.3, around the optimal marginals. PIPAGE marginals are the average of
1000 runs (max standard deviation in any marginal was < 10e-14).

all marginals given by the Leximin-optimal distribution p∗, π∗. We evaluate the extent to which
PIPAGE and BECK-FIALA preserve these marginals in Fig. 2. They are benchmarked against a new
IP, IP-MARGINALS, which computes the uniform lottery over supp(p∗) minimizing ||π∗ − π̄||∞.

Figure 2 demonstrates that in the instance “sf(a)”, all algorithms produce marginals that deviate neg-
ligibly from those given by π∗. Analogous results on remaining instances appear in Appendix D.4
and show similar results. As was the case for Maximin, we see that our theoretical bounds are
meaningful, but that we can consistently outperform them in real-world instances.

6 Discussion

Our aim was to show that uniform lotteries can preserve fairness, and our results ultimately suggest
this, along with something stronger: that in practical instances, uniform lotteries can reliably almost
exactly replicate the entire set of marginals given by the optimal unconstrained panel distribution.
Our rounding algorithms can thus be plugged directly into the existing panel selection pipeline with
essentially no impact on individuals’ selection probabilities, thus enabling translation of the output
of Panelot (and other maximally fair algorithms) to a nearly maximally fair and transparent panel
selection procedure. We note that our methods are not just compatible with ball-drawing lotteries,
but any form of uniform physical randomness (e.g. dice, wheel-spinning, etc.).

Although we achieve our stated notion of transparency, a limitation of this notion is that it focuses on
the final stage of the panel selection process. A more holistic notion of transparency might require
that onlookers can verify that the panel is not being intentionally stacked with certain individuals.
This work does not fully enable such verification: although onlookers can now observe individuals’
marginals, they still cannot verify that these marginals are actually maximally fair without verify-
ing the underlying optimization algorithms. Thus, in the common case where quotas require even
maximally fair algorithms to select certain individuals with probability near 1, onlookers cannot dis-
tinguish maximally fair selection from the scenario in which someone is being intentionally placed
on the panel.

In research on economics, fair division, and other areas of AI, randomness is often proposed as a
tool to make real-world systems fairer [Gri04, BCKM13, FSV20]. Nonetheless, in practice, these
systems (with a few exceptions, such as school choice [New21]) remain stubbornly deterministic.
Among the hurdles to bringing the theoretical benefits of randomness into practice is that allocation
mechanisms fare best when they can be readily understood, and that randomness can be perceived
as undesirable or suspect. Sortition is a rather unique paradigm at the heart of this tension: it relies
centrally on randomness, while in the public sphere it is attaining increasing political influence.
It is therefore a uniquely high-impact domain in which to study how to combine the benefits of
randomness, such as fairness, with transparency. We hope that this work and its potential for impact
will inspire the investigation of fairness-transparency tradeoffs in other AI applications.
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A Panel Selection Datasets

We examine data from the following 11 real-world sortition panel selection instances, generously
provided to us by several groups that specialize in organizing citizens’ assemblies. Table 1 shows the
instance short-names we use throughout the paper, and which organization was responsible for each
panel. The final two columns compare the values of our theoretical upper bounds on the marginal
discrepancy, illustrating that in all instances except “obf”, the bound from Theorem 3.3 is tighter.
Finally, we give some metadata about each instance, which is required for calculating the values of
our theoretical upper bounds.

In particular, n = number of pool members, k = number panel members, C = set of distinct realized
feature-vectors in the pool. Precise constants used for computing exact the upper bounds are derived
in Appendix B: the Theorem 3.2 bound is exactly k/m, the Theorem 3.3 bound is exactly√

1
2 (1 + ln 2

ln |C| ) ·
√
|C| ln(|C|) + 1

m
,

and the Theorem B.6 bound is exactly 2k/nmin+1
m . In all instances, nmin = 1.

B Omitted Proofs and Additional Beyond-Worst-Case Upper Bounds from
Section 3

B.1 Omitted Proofs

We will make repeated use of the following generalization of Hoeffding’s inequality (see eg. Propo-
sition 5 of [DR96]):

11

http://www.citizenassembly.ie/work/
http://www.citizenassembly.ie/work/
https://www.schools.nyc.gov/enrollment/enroll-grade-by-grade/how-students-get-offers-to-doe-public-schools/random-numbers-in-admissions
https://www.schools.nyc.gov/enrollment/enroll-grade-by-grade/how-students-get-offers-to-doe-public-schools/random-numbers-in-admissions
https://www.schools.nyc.gov/enrollment/enroll-grade-by-grade/how-students-get-offers-to-doe-public-schools/random-numbers-in-admissions


Table 1: Instance parameters and resulting theoretical bounds

Instance Organization n k |C| Thm 3.2 Thm 3.3 Thm B.6

sf(a) Sortition Foundation 312 35 182 35/m 24.2/m 71/m
sf(b) Sortition Foundation 250 20 92 20/m 16.5/m 41/m
sf(c) Sortition Foundation 161 44 92 44/m 16.5/m 89/m
sf(d) Sortition Foundation 404 40 108 40/m 18.0/m 81/m
sf(e) Sortition Foundation 1727 110 762 110/m 53.8/m 221/m
cca Center for Climate Assemblies 825 75 554 75/m 45.1/m 151/m
hd Healthy Democracy 239 30 202 30/m 25.6/m 61/m
mass MASS LBP 70 24 25 24/m 8.0/m 49/m
nexus Nexus 342 170 242 170/m 28.4/m 341/m
obf Of By For 321 30 294 30/m 31.6/m 61/m
ndem New Democracy 398 40 173 40/m 23.5/m 81/m

Lemma B.1. If {ξj} are negatively associated random variables with ξj ∈ [aj , bj ] and ξ =
∑
j ξj ,

then

Pr [|E[ξ]− ξ| ≥ t] ≤ 2 exp

{
− 2t2∑

j(bj − aj)2

}
.

Here is our first use:

Theorem 3.1. For any realizable π, we may efficiently randomly generate p̄ such that its marginals
π̄ satisfy

||π − π̄||∞ = O

(√
n log n

m

)
.

Proof of Theorem 3.1. Given a vector of marginals π, let p be a basic solution to Mp = π, where
M is the individual-feasible panel membership matrix, so that |supp(p)| ≤ n.

To construct our desired uniform lottery p̄, we will randomly sample a collection of m panels de-
noted by the vector x ∈ Z|K|+ , where xj is the number of copies of panel j in our set. We will do this
sampling in such a way that E[xj ] = m · pj . Once x is constructed, we will let p̄ := x/m.

We first define the vectors bmpc and m̃p, where bmpcj = bmpjc and m̃p = mp − bmpc. First,
to x we deterministically add bmpcj copies of each panel j. Then, there are m − || bmpc ||1 spots
left, which we will fill by randomly sampling x̃ ∈ {0, 1}K such that E[x̃j ] = m̃pj for all panels j.
We additionally wish to sample these x̃j such that ||x̃||1 = m− ||bmpc||1 and the x̃j are negatively
associated, as defined in [BJ12, DR96]. This may be accomplished via any number of sampling
algorithms [BJ12].

We will next analyze the marginal π̄i provided to any given individual i by this randomly sampled
p̄ = x/m. Consider the collection of x̃j for which i is contained in panel j. Note that these x̃j are
also negatively associated. Then for any t ≥ 0,

Pr[|πi − π̄i| ≥ t/m] = Pr [|mπi −mπ̄i| ≥ t] (B.1)

= Pr

∣∣∣∣∣∣E
∑
j3i

x̃j

−∑
j3i

x̃j

∣∣∣∣∣∣ ≥ t
 , (B.2)

by the definition of xj and E[xj ]. Then by Hoeffding (Lemma B.1),

≤ 2 exp

(
−2t2

|{j : i ∈ j}|

)
(B.3)

≤ 2 exp

(
−2t2

n

)
, (B.4)
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where here we use that |supp(p)| ≤ n. Then taking t =
√

1+ε
2 n log n,

≤ 2

n1+ε
. (B.5)

Union bounding over all n individuals, we find that

Pr

[
||π − π̄||∞ ≥

√
(1 + ε)/2

√
n log n

m

]
≤ 2

nε
< 1.

Note: if we are additionally guaranteed that all of the πi = Ω(k/n), then a multiplicative form of
Chernoff yields

||π − π̄||∞ = O

(√
k log n

mn

)
with constant probability.

Theorem 3.2. For any realizable π, we may efficiently construct p̄ such that its marginals π̄ satisfy

||π − π̄||∞ ≤ k/m.

Proof of Theorem 3.2. This result follows from the proof of Lemma 9 in Appendix B.4.1 of Flanigan
et al [FGGP20]. Their proof invokes an algorithm derived from a notable theorem by Beck and Fiala
[BF81], with a slight modification that ensures the exact preservation of their adding up constraint.
In our setting, this modification ensures that p̄, the rounded version of p, is also a valid distribution.

We note that rather than directly rounding p, we apply their argument to round a modified version of
p, call it p′. We make this modification because p must be rounded to multiples of 1/m, and their
approach does 0/1 rounding. The vector p′ is defined so it can be rounded to a 0/1 vector as follows:
for all panels j, p′j = pj ·m− bpj ·mc. Then, the algorithm rounds the entries of p′ to a 0/1 vector
p̄′ such that ||p′|| = ||p̄′||. With this rounding complete, the final uniform lottery p̄ is expressed as
p̄j = p̄′j/m+ bpj ·mc /m. Observe that p̄j is equal an integer divided by m, and thus the resulting
lottery p̄ contains multiples of 1/m. One can also verify that the adding up constraint is conserved:∑

j∈K
p̄j =

∑
j∈K

(p̄′j/m+ bpj ·mc /m) =
∑
j∈K

(p′j/m+ bpj ·mc /m) =
∑
j∈K

pj

Finally, we note that the upper bound of |F | on discrepancy that emerges from Flanigan et al’s
argument corresponds to a discrepancy of k in our setting. Then, when p̄′, π̄′ are re-scaled by 1/m
to produce the final uniform lottery p̄, π̄, this bound translates to a maximum discrepancy of k/m in
any marginal, giving our ||π − π̄||∞ ≤ k/m bound.

Theorem 3.3. If π is anonymous and realizable, then we may efficiently construct p̄ such that its
marginals π̄ satisfy

||π − π̄||∞ = O

(√
|C| log |C|
m

)
.

Proof of Theorem 3.3. We begin with anonymous marginals π witnessed by some distribution p over
K. The first order of business is to project p into “type space,” in order to derive a distribution over
panel types. Overloading F , we let F (P ) = P denote the panel type of a given panel P , defined as
the multiset F (P ) = {F (i) : i ∈ P}. Then we define the distribution over panel types induced by p
as p, where the probability of drawing panel type P from p is defined as pP :=

∑
P∈K:F (P )=P pP .

This p satisfies the PANEL TYPE LP in Eq. (3.3). As an aside, note that this p has support supp(p) =
{F (P ) : P ∈ supp(p)}. We will assume without loss of generality that p is a basic solution to (3.3),
so that it has at most |C| nonzero entries, where C is the set of all feature-vectors appearing in the
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pool, i.e., supp(p) ≤ |C|. Since |supp(p)| ≤ n without loss of generality, |supp(p)| ≤ n also, and
so this basic p may be found efficiently.

Given this distribution p over panel types, we will round it to a uniform lottery p̄ of sizem over panel
types K. Finally, we will lift this distribution over panel types p̄ back to a distribution p̄ over panels
with the desired guarantee, and argue that this lift can be performed when the original marginals π
are anonymous.

We randomly generate p̄ from p via randomized rounding analogous to what was deployed in The-
orem 3.1. We will again do this in such a way that E[xj ] = m · pj for all panel types j. Once x is
constructed, we will let p̄ := x/m.

We again define the vectors bmpc and m̃p, where bmpcj = bmpjc and m̃p = mp− bmpc. First, to
x we deterministically add bmpcj copies of each panel type j. Then, there are m− || bmpc ||1 spots
left, which we will fill by randomly sampling x̃ ∈ {0, 1}|K| such that E[x̃j ] = m̃pj for all panel
types j. We additionally wish to sample these x̃j such that ||x̃||1 = m − ||bmpc||1 and the x̃j are
negatively associated, which is again doable.

Recall that type marginals τc, τ̄c represent the expected number of panel spots allocated to each fea-
ture vector c by p, p̄, respectively. We will next analyze the proximity of the rounded type marginals
τ̄c to the original type marginals τc. Proceeding via an analysis similar to that of Theorem 3.1, we
consider the collection of x̃j for which feature vector c appears on panel type j (i.e., Qcj > 0).
We note that these x̃j are again negatively associated, and thus all Qcj x̃j are negatively associated,
since for a fixed instance all Qcj are constant.

Then for any t ≥ 0,

Pr[|τc − τ̄c| ≥ t/m] = Pr [|mτc −mτ̄c| ≥ t] (B.6)

= Pr

∣∣∣∣∣∣E
∑

j

Qcj x̃j

−∑
j

Qcj x̃j

∣∣∣∣∣∣ ≥ t
 , (B.7)

by the definition of xj and x̃j . Then by Hoeffding (Lemma B.1) with ξj = Qcj x̃j ,

≤ 2 exp

(
−2t2∑
j Q

2
cj

)
(B.8)

≤ 2 exp

(
−2t2

|C|m2
c

)
, (B.9)

where mc := maxj Qcj , because |supp(p)| ≤ |C|. Therefore taking tc = α ·mc ·
√
|C| log |C|,

≤ 2

|C|2α2 . (B.10)

Taking α >
√

1
2 (1 + log 2

log |C| ) and union bounding over all |C| feature vectors, we may guarantee
that with positive probability, the τ̄ resulting from this p̄ satisfies

||τ − τ̄ ||∞ ≤ α ·mc

√
|C| log |C|
m

. (B.11)

Given such a τ̄ , it remains to construct some uniform lottery p̄ over K which is consistent with τ̄
and additionally satisfies the desired guarantees on π̄. The challenges here are to ensure that

1. 0 ≤ π̄i ≤ 1 for all i,

2. each individual appears on each panel in p̄ at most once,8 and

3. |πi − π̄i| is small for all i.

8We note that this is a concern because we will not simply be choosing panels from collection K (as we
don’t see the entire collection a priori); we will instead be constructing panels that must turn out to be feasible.
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We will describe an algorithm for forming p̄ from p̄ and argue that it satisfies all three of these
criteria.

In particular, p̄ encodes a lottery overm panel types Pj , possibly with multiplicity. From each panel
type Pj in the support of p̄, we form one panel in the support of p̄ by, for each c ∈ C, allocating
each of panel type Pj’s Qcj “spots” to individuals i ∈ Nc.
We will populate each panel type Pj with individuals for each c independently. Once this is done
for all c ∈ C, we will have a panel Pj ∈ supp(p̄). Therefore all of what follows is for fixed c ∈ C,
and will be done for each c in turn. For convenience, let Nc := {i ∈ [n] : F (i) = c} be the nc
individuals with feature vector c.

For each i ∈ Nc, we would like to take π̄i = τ̄c/nc. (This is the aim, since π is anonymous by
assumption, and so πi = τc/nc.)

Since τ̄c/nc may not be an integer, round up or down by 1 such that
∑
i∈Nc

π̄i = τ̄c arbitrarily.
Clearly these π̄i ≥ 0. To see that π̄i ≤ 1, observe that since p is a distribution,

τ̄c =
∑
j

p̄jQcj ≤ max
j
Qcj = mc ≤ nc,

where the last inequality follows because all P are feasible panel types, so they cannot contain more
individuals i ∈ Nc than exist in the pool. Dividing by nc yields π̄i ≤ dτ̄c/nce ≤ 1. This satisfies
(1).

Next we argue that these individuals i ∈ Nc may be assigned to panels such that these marginals π̄i
are satisfied and no individual appears on any panel more than once. To do this, assign individuals
to panels greedily, in the following sense. Order the m panel types Pj arbitrarily, and let

dji := m · π̄i −
∑
j′<j

1{i ∈ Pj′}

be the number of “spots” in p̄ of type c on which i still needs to be placed at the beginning of round
j in order to reach their allocation ofmπ̄i spots. (This dji can be viewed as the “unsatisfied demand”
of individual i at round j, according to the promised number of spots mπ̄i.) At every step j, choose
for panel type Pj the Qcj individuals i ∈ Nc with the largest dji , ie. the most unsatisfied demand,
to be on panel Pj .

Because the π̄i are all either bτ̄c/ncc or dτ̄c/nce, the initial values of d0
i for i ∈ Nc are all within 1

of one another. Note that the greedy algorithm preserves this property that dji remain within 1 of one
another for all steps j, since at each step j it decreases some collection of maximal dji by 1. To see
that the greedy algorithm succeeds, suppose for the sake of contradiction that we reach some first
step j for which a position on panel Pj cannot be filled; then there are not enough individuals with
remaining unmet demand, so Qcj > |{i : dji > 0}|. Since Qcj ≤ mc ≤ nc, it must be the case that
some i ∈ Nc have already been fully assigned by step j (meaning that for them dji = 0), and so all
dji ∈ {0, 1} because the dji are within 1 of one another. But

∑
j Qcj =

∑
i d

0
i = m · τ̄c, while at

this point ∑
j′≥j

Qcj′ ≥ Qcj > |{i : dji > 0}| =
∑
i

dji ,

meaning that the number of unallocated spots of type c remaining at step j exceeds the remaining
unmet demand of the i. This implies that strictly more than Qcj′ individuals i were given spots on
panel j′ for some earlier j′ < j. But this cannot have happened, and so this greedy algorithm must
succeed in feasibly assigning individuals of each type c to panels. Running it for each c ∈ C in turn
gives a collection of quota-feasible panels, with no individual appearing on any panel more than
once. This satisfies (2).

To conclude, we confirm that the individual marginals are close. By the anonymity of π, for all i
with F (i) = c we have πi = τc/nc, and also π̄i = τ̄c/nc ± 1/m. Since mc ≤ nc, therefore (B.11)
implies

|πi − π̄i| ≤
mc

nc
· α ·

√
|C| log |C|
m

+
1

m
= O

(√
|C| log |C|
m

)
,

for all i, satisfying (3).
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Theorem 3.4. There exist p, π for which for all uniform lotteries p̄, π̄,

min
p̄∈D
||π − π̄||∞ = Ω

(√
k

m

)
.

Proof of Theorem 3.4. We will make use of the following lemma:

Lemma B.2. Any k-uniform hypergraph on [n] is realizable via quotas as the set of feasible panels
for an instance of the panel selection problem with pool [n].

When individual membership in feasible panels is represented as M ∈ {0, 1}n×|K|, this lemma
claims that any M with uniform column norms is realizable by an instance of the panel selection
problem.

Proof. Given a set system S ⊆ ([n]
k ), we may construct a set of upper quotas such that the collection

of feasible panels is exactly S.

To do this, construct a binary feature fT for each T 6∈ S . For each i in [n], let fT (i) = 1 if and
only if i ∈ T ; otherwise let fT (i) = 0. Finally, enforce the upper quota that for all feasible panels
P ⊂ [n], ∑

i∈P
fT (i) ≤ k − 1,

for all T 6∈ S—that is, no feasible panel has more than k − 1 members belonging to any T . Clearly
no T 6∈ S is a feasible panel. For S ∈ S , observe that |S| = k, and so for all T 6∈ S , we have
|S ∩ T | ≤ k − 1. Therefore all S ∈ S are feasible.

Finally, it bears noting that this is also possible to execute using lower quotas: taking f ′T (i) =
1− fT (i), we could instead enforce for each T 6∈ S that∑

i∈P
f ′T (i) ≥ 1.

Using this lemma, our aim is to deploy some matrix M ∈ {0, 1}n×|K| for which

min
x̄∈∆̄
||Mx̄||∞ = Ω

(√
k
)
,

where ∆̄ := {x ∈ {. . . ,−3,−1, 1, 3, . . .}N :
∑
i xi = 0} and all columns of M sum to k. Translat-

ing and scaling appropriately and applying Lemma B.2, this will provide our desired Ω
(√

k
m

)
lower

bound.

The common instances which provide lower bounds of Ω(
√
k) for the Beck-Fiala problem are in-

sufficient for our purposes in two respects. First, while they are column-sparse, they are generally
not uniform in column norm. Second, they are incomparable in terms of the x̄ which they quan-
tify over. The Beck-Fiala problem considers minimizing ||Mx̄||∞ in the more restrictive rounding
setting where x̄ ∈ {−1, 1}n, while we are concerned with x̄ ∈ ∆̄.

We overcome these barriers by first modifying the Walsh matrices — a family of Hadamard matrices
— in order to guarantee uniform column norms, and then modifying the Beck-Fiala lower bound
proof of [Spe85, Theorem 19] for arbitrary Hadamard matrices to apply to our matrices for all
x̄ ∈ (2Z + 1)n.

To begin, let Ht be the 2t × 2t Walsh matrix, defined recursively by H0 = 1 and

Ht+1 =

[
Ht Ht

Ht −Ht

]
.

Let N := 2t denote its dimension. It is a fact that all rows (and columns) besides the first have an
equal number of 1 and −1 entries. Therefore we take H ′t to be the submatrix derived by dropping
the first two columns of Ht. (We remove the first column so that all remaining columns have equal
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sum; we remove the second so that ∆̄ is nonempty). Additionally, let hi denote the rows of H ′t, and
hj denote its columns. Then H ′t has the property that

∑
i h

j
i = 0, and in particular all columns hj

have N/2 1-entries.

We have the following lemma:

Lemma B.3.

min
x∈∆̄
||H ′t x||∞ ≥

N − 2√
N

,

where ∆̄ := {x ∈ {. . . ,−3,−1, 1, 3, . . .}N−2}.

Proof. This right-hand side is H ′t x = (h1x, . . . , hNx)T . We aim to show that there is some i for
which |hix| is large. Writing ||H ′t x||22 two ways, we have that∑

i

(hix)2 = ||x1h
1 + . . .+ xN−2h

N−2||22

=
∑
j

x2
j ||hj ||22 +

∑
j 6=k

xjxk(hj · hk).

The entries of Ht are all ±1, and hj · hk = 0 for j 6= k (since the columns of Ht and therefore H ′t
are orthogonal), so this becomes

= (N − 2)
∑
j

x2
j

≥ (N − 2)2,

since x2
i ≥ 1 by assumption. Therefore by averaging there is some i for which (hix)2 ≥ (N−2)2

N ,
and so |hix| ≥ N−2√

N
), as desired.

Next we translate H ′t into an instance of the panel selection problem and argue it has the desired
properties. Take M := 1

2 (Ht + 1N×(N−2)) to be the {0, 1} matrix derived from H ′t.

The fact that M has uniform column norm k = N/2 directly follows from a property of Walsh
matrices. Therefore we may apply Lemma B.2 to argue that M is realizable as the individual-panel
membership matrix for some instance of the panel selection problem, with n = N , |K| = N − 2,
and k = N/2.

To conclude, consider the uniform p =
(

1
N−2 , . . . ,

1
N−2

)
, with m = a(N − 2) + (N − 2)/2 for

any a ∈ Z+. In this case, each coordinate of p falls evenly between multiples of 1/m and must
be rounded to multiples of 1/m. Letting x := p − bmpc/m = (1/2m, . . . , 1/2m) be this vector
of remainders, we must replace it with some x̄ ∈ (Z/m)N−2, while maintaining that

∑
j x̄j =∑

j xj = (N − 2)/2m, so that the resulting p̄ = bmpc/m + x̄ remains a distribution over panels.
(Note that here negative x̄j signify that the distribution mass on panel j decreases from p to p̄.)

Explicitly, we then have

||π − π̄||∞ = ||Mp−Mp̄||∞ (B.12)
= ||M(x− x̄)||∞ (B.13)

=
1

2m
||My||∞, (B.14)

where y := 2m(x̄− x).

=
1

2m
||1

2
H ′ty +

1

2
1N×(N−2)y||∞ (B.15)

=
1

4m
||H ′ty||∞, (B.16)
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where
∑
i yi = 0 because we require that p̄ remain a distribution. Then since y ∈ (2Z + 1)N−2, by

Lemma B.3 we have

≥ N − 2

4m
√
N

(B.17)

= Ω

(√
k

m

)
, (B.18)

since k = N/2.

This holds for all y ∈ (2Z + 1)N−2. Recall that D := {p̄ ∈ (Z+/m)|K| : ||p̄||1 = 1}, and so

D ⊆ {p+ ∆̄/2m}.

Therefore (B.18) implies that

min
p̄∈D
||π − π̄||∞ = Ω

(√
k

m

)
,

as desired.

B.2 Additional Beyond-Worst-Case Upper Bounds

Since some of our beyond-worst-case upper bounds apply to anonymous realizable π, it is reasonable
to ask how prevalent anonymous realizable π are, for arbitrary instances of sortition. Fortunately,
we have the following claim:

Claim B.4. For any instance of the panel selection problem and any realizable π, let π′ be the
“anonymized” marginals obtained by setting π′i to the average πi′ across all i′ with the same feature
vector as i. Then π′ is realizable also.

Proof of Claim B.4. Let π∗ denote the “anonymization” of π, and take

Π :=

π′ : realizable, and for all c,
∑

i:F (i)=c

π′i =
∑

i:F (i)=c

πi

 .

We will show that π∗ ∈ Π.

We argue by way of contradiction. Let π̂ denote the “most anonymized” π′ ∈ Π, in the sense that

π̂ = arg min
π′∈Π

max
c

(
max

i:F (i)=c
π′i − min

i:F (i)=c
π′i

)
.

Let i and i′ be some pair of individuals with F (i) = F (i′) witnessing this maximum diameter, and
let p be a distribution with marginals π̂. For each such pair, we will argue that p may be modified so
that π̂i = π̂i′ while leaving all other marginals unchanged. By iteratively applying this to all such
pairs, we will contradict the minimality of π̂.

To start, observe that by assumption π̂i > π̂i′ . Let p′ be the distribution over feasible panels which
is the same as p, except that i and i′ switch places in any panel on which either of them appear. All
such panel replacements yield feasible panels, since they have the same feature vector c. Finally
take pnew = (p + p′)/2. As promised, this distribution has the property that πi = πi′ and all other
marginals are unchanged.

As a warm-up to the beyond-worst-case guarantees, we begin with the case when there is only one
feature of interest, so that F = {f}. We place no constraints on the size of the set of feature values
Ω, nor do we require that π is anonymous.

Theorem B.5. If π is realizable and |F | = 1, then we may efficiently identify p̄ such that its
marginals π̄ satisfy

||π − π̄||∞ <
2

m
.
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Proof of Theorem B.5. Given marginals π, let p be a distribution over feasible panels K which wit-
nesses π. The first step of this rounding is to consider the marginals τv of each feature value v:
τv =

∑
i:f(i)=v πi. Note that

∑
v τv =

∑
i πi = k. Since there is only one feature, all quotas for

feasible panels P are of the form

lv ≤ |{i ∈ P : f(i) = v}| ≤ uv, (B.19)

and taking the expectation of this over p gives

lv ≤ Ep[|{i ∈ P : f(i) = v}|] ≤ uv (B.20)
lv ≤ τv ≤ uv. (B.21)

Therefore lv ≤ bτvc and uv ≥ dτve. We will construct a new distribution p̄ over panels P which
satisfy bτvc ≤ |{i ∈ P : f(i) = v}| ≤ dτve for all features v, and are therefore guaranteed to be
feasible.

We will construct feasible panels via the following scheme. Consider the interval [0, km] ⊂ R as
representing the km spots to be allocated across the m panels which will comprise our lottery, and
let st := [t − 1, t) denote spot t. Next observe that m

∑
i πi = km, and so mπi may be viewed as

the expected number of spots which p would give to i.

First group the πi by feature value to form τv =
∑
i:f(i)=v πi, and then pack them into [0, km], so

that individuals with common feature values have contiguous sections; let Si denote the portion of
[0, km] allocated to i, so that |Si| = πi. We will choose an individual I(t) for each spot st, and then
assemble the m panels that comprise p̄ by taking

Pr := {I(t) : t = wm+ r for w ∈ {0, . . . , k − 1}}, (B.22)

for r ∈ {1, . . . ,m}.
How to choose which individual will get the spot t for each t? If Si ⊇ st then I(t) = i. Otherwise,
st is split between two or more individuals, possibly with different feature values, in which case we
call it contested. Observe that no matter how these contested st are allocated (no matter the choice
of I(t) for split t), it will be the case that |πi − π̄i| < 2/m, since there is at most one contested st at
each endpoint of the interval Si.

It remains to argue that the panels chosen in (B.22) are feasible; in particular that bτvc ≤ τ̄v ≤ dτve
for all v. By construction, each panel Pr has some number of spots which will necessarily be
allocated to an individual with feature value v, and some number of spots which are contested and
may or may not be allocated to an individual with feature vector v. For each value v, there are at
most two spots in all of [0, km] which are type contested in this way. If some panel Pr contains at
most one type-contested spot for type v, then no matter which way it is allocated, |{i ∈ P : f(i) =
v}| − τv| < 1, and so Pr is feasible with respect to v. In the worst case, for some given v both
of the spots which are type-contested by v appear on the same panel Pr. In order to ensure that
|{i ∈ P : f(i) = v}| − τv| < 1, it must be the case that exactly one of these two spots is allocated
to some i for which f(i) = v. Fortunately this constraint is easily satisfiable, even in the case when
a given panel Pr contains both of the type-contested spots for multiple features v.

Therefore the p̄ as constructed by (B.22) is supported by panels which are not only feasible but
respect quotas which are maximally tight, given that the input p, π was realizable. Finally since
each i contests at most two spots, we have that

||π − π̄||∞ <
2

m
.

Theorem B.6. Given realizable anonymous π, we may efficiently identify p̄, π̄ such that

||π − π̄||∞ = O

(
1

m
max

{
k

nmin
, 1

})
,

where nmin := minc nc is the minimum number of individuals in the pool which share any one
feature vector.
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Proof. We proceed as in the proof of Theorem 3.3, but apply a different rounding to the panel type
LP to obtain p̄. To begin, p, π projects to some p, τ . Without loss of generality assume that it is a
basic solution to the TYPE LP, (3.4).

Again let x ∈ Z|K|+ be the vector of panel type counts which we select to form p̄, so that p̄ = x/m
and ||x||1 = m. We will again start by deterministically choosing bxc = bmpc, the integer part
of mp. In order to fill out x = bxc + x̃, we will once again construct x̃ ∈ {0, 1}|K| such that
||bxc||1 + ||x̃||1 = m. Let m̃p = mp − bmpc ∈ (0, 1)|K| denote the fractional solution which we
round to obtain x̃.

Note that the constraint matrix Q in (3.3) has the property that for all columns qj , ||qj ||1 = k.
As a special case of [Doe07, Theorem 6], applied to m̃p and the panel type LP, there exists an
x̃ ∈ {0, 1}|K| such that

||Q(m̃p− x̃)||∞ < 2k.

and for which ||m̃p||1 = ||x̃||1. (This follows from a generalization of the Beck-Fiala algorithm
which both respects hard constraints and applies to arbitary matricesQwith bounded column norms,
and is therefore also algorithmic.)

It is clear that the resulting p̄ is a distribution over panel types. Its marginals therefore satisfy

||τ − τ̄ ||∞ = ||Qp−Qp̄||∞ =
1

m
||Q(m̃p− x̃)||∞ <

2k

m
.

Given that such a p̄, τ̄ exists, it remains to generate p̄ and π̄ in such a way as to give the desired
bound on the discrepany in individual marginals. We proceed in a manner identical to the proof of
Theorem 3.3.

Again we have that τ̄ ≥ 0 and τ̄ =
∑
j Qcj p̄j ≤ mc ≤ nc, where mc = maxj Qcj and nc is the

number of individuals i for which F (i) = c, since p̄ is a distribution over feasible panel types j.
Therefore dividing τ̄ amongst the π̄i as equally as possible for each c gives π̄i ∈ [0, 1].

By the anonymity of π, for all i with F (i) = c, πi = τc/nc, and dividing the spots in p̄ for feature
vector c as equally as possible amongst the nc individuals gives π̄i ∈ {τ̄c/nc ± 1

m}. This equal
division of spots in order to form p̄ from p̄ is feasible by the same greedy algorithm as in the proof
of Theorem 3.3. Therefore the resulting p̄, π̄ satisfies

||π − π̄||∞ = max
c
|τc/nc − π̄|

<
1

nc
||τ − τ̄ ||∞ +

1

m

<
2k

nmin ·m
+

1

m
.

C Omitted Proofs from Section 4

Theorem 4.1. There exists a Maximin-optimal p∗ such that, for all uniform lotteries p̄,

Maximin(p∗)−Maximin(p̄) = Ω

(√
k

m

)
.

Proof of Theorem 4.1. We will follow the proof of Theorem 3.4: first we use the Walsh matrices to
construct a matrix with the desired properties, prove a modified version of Lemma B.3 for it, and
then appeal to Lemma B.2 to argue that it corresponds to a realizable instance of the panel selection
problem.

In contrast to the construction in Theorem 3.4, where we need only demonstrate that some π̄i de-
viates from πi, we must construct an instance for which (essentially) the minimum πi necessarily
decreases. We accomplish this by first modifying the Walsh matrices to have uniform row norm, so
that π is uniform and all πi are minimal. We then introduce a second set of “twin” individuals, each
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i′ of which is a member of the panels which their twin i is not. This ensures that any discrepancy in
π̄ − π is witnessed in the downward direction.

To begin, again let Ht be the 2t × 2t Walsh matrix, with N := 2t its dimension. This time we take
H∗t to be the submatrix derived by dropping the first row of Ht. By properties of Walsh matrices,
all remaining rows in H∗t have an equal number of 1 and −1 entries, (though this is no longer true
of the columns).

Again letting hi denote the rows of H∗t , and hj denote its columns, we have the following new
version of Lemma B.3, which requires the additional assumption that

∑
j xj = 0:

Lemma C.1.
min
x∈∆∗

||H∗t x||∞ ≥
√
N,

where ∆∗ := {x ∈ {. . . ,−3,−1, 1, 3, . . .}N :
∑
j xj = 0}.

Proof. This right-hand side is H ′t x = (h1x, . . . , hN−1x)T . We aim to show that there is some i for
which |hix| is large. Writing ||H ′t x||22 two ways, we have that∑

i

(hix)2 = ||x1h
1 + . . .+ xNh

N ||22

=
∑
j

x2
j ||hj ||22 +

∑
j 6=k

xjxk(hj · hk)

the entries of H∗t are all±1, and hj ·hk = −1 for j 6= k (since the columns of Ht were orthogonal),
so this becomes

= (N − 1)
∑
j

x2
j −

∑
j 6=k

xjxk

= N
∑
j

x2
j −

∑
j

∑
k

xjxk

= N
∑
j

x2
j

≥ N2,

since x2
i ≥ 1 by assumption. Therefore by averaging there is some i for which (hix)2 ≥ N2

N−1 , and
so |hix| ≥

√
N , as desired.

As constructed, all rows of H∗t have the same number of 1s, so when we transform it into some M
for some instance of the panel selection problem, it will yield that the marginals π of uniform p are
uniform. However we cannot yet apply Lemma B.2, since the columns of the resulting M do not
have constant norm; in particular, the first column will be all 1s.

In order to simultaneously correct for this and translate from `∞ to Maximin lower bounds, we
introduce “twins” for each i. Letting M∗ = 1

2 (H∗t + 1(N−1)×N ) be this {0, 1} matrix, define
M̄∗ := 1(N−1)×N −M∗ to be its complement, so that M∗ij = 1− M̄∗ij for all i, j. Finally take

M =

[
M∗

M̄∗

]
and observe that this M ∈ {0, 1}(2N−2)×N has uniform column norm N − 1 because of M̄∗. We
may therefore apply Lemma B.2 to claim that it is the individual-panel membership matrix of some
instance of the panel selection problem.

The remainder of the argument proceeds similarly to that of Lemma B.3, with additional step of
showing that the lower bound holds for the maximin objective. We include the full argument for
completeness.

Similarly take p =
(

1
N , . . . ,

1
N

)T
, with m = aN +N/2 for any a ∈ Z+, n = 2N − 2 (the number

of individuals), and k = N − 1. This p gives equal marginals: here πi = (Mp)i = N−1
2N−2 = k

n
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for all i. Again each coordinate of p falls evenly between multiples of 1/m and must be rounded to
multiples of 1/m. Letting x := p− bmpc/m = (1/2m, . . . , 1/2m)T be this vector of remainders,
we must replace it with some x̄ ∈ (Z/m)N , while maintaining that

∑
j x̄j =

∑
j xj = N/2m, so

that the resulting p̄ = bmpc/m+ x̄ remains a distribution over panels.

Explicitly, we then have
||π − π̄||∞ = ||Mp−Mp̄||∞ (C.1)

= ||M(x− x̄)||∞ (C.2)

=
1

2m
||
[
M∗

M̄∗

]
y||∞, (C.3)

where y := 2m(x̄− x). Because `∞ is a maximum, this is

≥ 1

2m
||M∗y||∞ (C.4)

=
1

2m
||1

2
H∗t y +

1

2
1(N−1)×Ny||∞ (C.5)

=
1

4m
||H∗t y||∞, (C.6)

where
∑
i yi = 0 because we require that p̄ remain a distribution. Then since y ∈ (2Z + 1)N−2, by

Lemma B.3 we have

≥
√
N

4m
(C.7)

= Ω

(√
k

m

)
, (C.8)

since k = N − 1. Again since D ⊆ {p+ ∆̄/2m}, we then have

min
p̄∈D
||π − π̄||∞ = Ω

(√
k

m

)
.

Since π is uniform by construction (and so these p and π are optimal with respect ot Maximin),
this is a lower bound on the discrepancy of each marginal which was minimal before deviation. It
finally remains to show that this deviation happens in the downward direction, so that the minimum
marginal decreases by at least this amount. Observe that by the construction of M̄∗, for all p̄ we
have (M∗p̄)i = −(M̄∗p̄)i. Therefore for any given p̄, whichever coordinate i satisfies |(π − π̄)i| =
Ω(
√
k/m), there is a coordinate i′ for which (π − π̄)i′ = Ω(

√
k/m). Therefore in this instance

Maximin(p∗)−max
p̄∈D

Maximin(p̄) = Ω

(√
k

m

)
,

as desired.

Lemma 4.1. For NW-optimal p∗ over a support of panels supp(p∗), there exists a constant λ ∈ R+

such that, for all P ∈ supp(p∗),
∑
i∈P 1/π∗i = λ.

Proof of Lemma 4.1. We can write the problem of finding the NW optimizing distribution over a
fixed panel support P ⊆ K as below on the left, where NWn(p) is equal to the geometric mean
of π, the marginals implied by the panel distribution p (in contrast, in Section 2, we let NW (p) be
the nth root of the geometric mean—here we we take the n-th power of NW to get the geometric
mean NWn). On the right, we’ve rewritten the program in standard form, where we set f(p) =
−NWn(p), h(p) = p1 + p2 + · · · + p|P| − 1, and gj(p) = −pj . Observe that, ∀j ∈ [|P|],
∇h(p) = 1 and ∇gj(p) = −ej , where ej is the vector of 0s with a 1 at index j.

max
p

NWn(p) min
p
f(p)

||p||1 = 1 h(p) = 0

pj ≥ 0 ∀j ∈ [|P|] gj(p) ≤ 0 ∀j ∈ [|P|]

22



Now, let p∗ be the optimal solution to this program, and supp(p∗) be its support, i.e., the set of
panels to which p∗ assigns nonzero probability. Then, since the objective and constraints of the
above program are continuously differentiable over their entire support (and thus at p∗), by the KKT
condition Stationarity, there exist some constants λ and µj for all j ∈ [|supp(p∗)|] (where 0 is the
zero vector) such that

∇f(p∗) + λ∇h(p∗) +
∑

j∈[|supp(p∗)|]

µj∇g(p∗) = 0 =⇒ (∇f(p∗))j = µj − λ

By dual feasibility and primal feasibility respectively, we have that µj , pj ≥ 0 for all j ∈
[|supp(p∗)|]; by complementary slackness, we have that

∑
j∈[|supp(p∗)|] µjpj = 0. Thus, for all

j, either pj = 0, or pj > 0 and µj = 0. We have restricted supp(p∗) to panels j in which pj > 0,
so we conclude that µj = 0. It follows that

∂NWn(p∗)

∂pj
= − (∇f(p∗))j = −(µj − λ) = λ ∀j ∈ supp(p∗)

Finally, we can conclude the proof by expressing this partial derivative for fixed pj (which as shown,
has a constant value across all j) in terms of the marginals π:

∀j ∈ supp(p∗), λ =
∂NWn(p∗)

∂pj
=
∑
i∈N

NWn(p∗)

πi

∂πi
∂pj

=
∑
i∈Pj

NWn(p∗)

πi
= NWn(p∗)

∑
i∈Pj

1

πi


where Pj is the jth panel in supp(p∗). The second equality is by the product rule, where each term
of the resulting sum is equal to the derivative of π with respect to pj multiplied by NW/πi, the
NW holding out the marginal of individual i. The third equality is by the fact that if i ∈ Pj , then
∂πi/∂pj = 1; else, ∂πi/∂pj = 0.

Lemma 4.2. For Nash-Welfare optimal p∗, π∗, we have that π∗i ≥ 1/n for all i ∈ N .

Proof of Lemma 4.2. Let X[P 3 i] be the indicator that a panel P contains individual i. Then,

EP∼p∗
[∑
i∈P

1

π∗i

]
= EP∼p∗

[∑
i∈N

X[P 3 i]
π∗i

]
=
∑
i∈N

EP∼p∗ [X[P 3 i]]
π∗i

=
∑
i∈N

π∗i
π∗i

= n

By Lemma 4.1, we also have that EP∼p∗
[∑

i∈P
1
π∗i

]
= λ, and thus the λ specified by Lemma 4.1

is equal to n. It follows that π∗i ≥ 1/n ∀i ∈ N ; otherwise, we would have some panel P for which∑
i∈P

1
πi
> n, a contradiction.

Lemma 4.3. For NW-optimal p∗, π∗, there exists a uniform lottery p̄, π̄ that satisfies NW(p∗) −
NW(p̄) ≤ k ||π∗ − π̄||∞.

Proof of Lemma 4.3. Let π∗min be the smallest marginal of any individual implied by the Nash-
optimal distribution over panels p∗, i.e., π∗min = mini∈N π

∗
i . Then, to upper-bound the loss in

NW, we assume an unattainable worst case that between p∗, π∗ and a given uniform lottery p̄, π̄,
all individuals probabilities suffer the largest loss of any marginal, ||π∗ − π̄||∞. This first gives the
multiplicative bound

NW (p∗) ≥ NW (p∗)

(
π∗min − ||π∗ − π̄||∞

π∗min

)
= NW (p∗)

(
1− ||π

∗ − π̄||∞
π∗min

)
.

Rearranging the above conclusion and then applying the facts that NW (p∗) ≤ k/n (trivially) and
π∗min ≥ 1/n (Lemma 4.2), we get the desired additive bound:

NW (p∗)−NW (p) ≤ NW (p∗) · ||π
∗ − π̄||∞
π∗min

≤ k

n
· ||π

∗ − π̄||∞
1/n

≤ k ||π∗ − π̄||∞
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D Omitted Materials from Section 5

D.1 Algorithm Descriptions

Algorithms for calculating optimal panel distributions.
In this paper, we calculate optimal panel distributions across instances with respect to Maximin,
NW, and Leximin objectives. To do this, we build on publicly-available code [HG20], which im-
plements the column generation techniques from [FGG+21].

Rounding algorithms.
At a high level, the task solved by the PIPAGE and BECK-FIALA rounding algorithms in Section 5
can be thought of as rounding an input panel distribution p to some uniform lottery p̄ by rounding
the STANDARD LP described in Section 3. However, neither of these rounding methods are used to
directly round p; rather, they are used to round a modified version p′, which transforms the task from
rounding entries of p to multiples of 1/m to the task of rounding entries of p′ to 0/1. The details of
this transformation are described in the proof of Theorem 3.2 in Appendix B.

PIPAGE
We round p′ exactly according to the Pipage Rounding algorithm specified in Gandhi et al
[GKPS06]. We note that their algorithm is specified for the task of rounding bipartite graphs; we
apply their methods by formulating our rounding problem as a star graph, where each of the |K|
vertices surrounding the central vertex corresponds to a feasible panel P . Each edge from the cen-
tral vertex i to a surrounding vertex P has a weight (which will ultimately be rounded to 0/1) equal
to xi,P = p′P , the probability of drawing panel P from the modified version of the initial distri-
bution p′. Gandhi et al’s degree preservation property guarantees the satisfaction of our adding up
constraint ||p′|| = ||p̄′||.
BECK-FIALA
Our Beck-Fiala implementation is identical to the deterministic implementation specified in the
proof of Lemma 9, Appendix B.4.1 of [FGGP20]. For details on the mapping of their setting to
ours, see the proof of Theorem 3.2 in Appendix B.

Integer Programs.

IP-MAXIMIN
The below integer program computes a lottery p̄ ∈ (Z+/m)|K|, where the variables are y, the lower
bound on any marginal probability; p̄, the uniform lottery; and π̄, the implied vector of marginals.
The first constraint, along with the objective, result in the maximization of the minimum marginal.
The second constraint imposes the relationship between the panel distribution p̄ and the marginals
π̄. The third constraint imposes that the resulting panel distribution x will be a uniform lottery. The
fourth and fifth constraints impose that p̄ is a valid distribution.

Maximize y
s.t. π̄i ≥ y ∀i ∈ N∑

P∈K,
P3i

p̄P = π̄i ∀i ∈ N

m p̄P ∈ Z+ ∀P ∈ K∑
P∈K

p̄P = 1

p̄P ≥ 0 ∀P ∈ K

IP-NW
This integer program is essentially the same as IP-MAXIMIN, except that instead of maximizing the
lower bound on the marginals, it maximizes the geometric mean of the marginals by equivalently

24



maximizing the sum of their logarithms.

Maximize
∑
i∈N

log(π̄i)

s.t.
∑
P∈K,
P3i

p̄P = π̄i ∀i ∈ N

m p̄P ∈ Z+ ∀P ∈ K∑
P∈K

p̄P = 1

p̄P ≥ 0 ∀P ∈ K

IP-MARGINALS
This IP takes as input some panel distribution p, π to be rounded, and minimizes the largest discrep-
ancy of any resulting π̄i from the corresponding πi. Again, several of the constraints and variables
are common with IP-MAXIMIN.

Minimize z
s.t. |πi − π̄i| ≤ z ∀i ∈ N∑

P∈K,
P3i

p̄P = π̄i ∀i ∈ N

m p̄P ∈ Z+ ∀P ∈ K∑
P∈K

p̄P = 1

p̄P ≥ 0 ∀P ∈ K

D.2 Implementation Notes and Algorithm Runtimes

Our experiments were implemented in Python and run on a 13-inch MacBook Air (2018) with a 1.6
GHz Intel Core i5 processor.

Runtimes of PIPAGE, BECK-FIALA, and IP-NW on rounding an unconstrained distribution are
given in the table below.9 We optimized IP-NW with Gurobi using its built-in piecewise linear
approximation of logarithms (given that IP-NW is nonlinear) with the parameter controlling the
error in the piecewise approximation set to FuncPieceError=0.0001. This worked quite well in most
instances, getting within 1/m of optimal fairness on 10 out of 11 instances.

IP-MAXIMIN and IP-MARGINALS were run in Gurobi and struggled to converge completely (even
after many hours), but showed good performance after a short time. The results in the paper show
their solutions after 30 minutes of run-time.
∗ indicates capped at 7200s (2 hours). Time is measured in seconds. All times given (except those
that timed out) represent the average over 3 runs.

D.3 Analysis of Nash Welfare Fairness Preservation (Figure corresponding to Figure 1)

Here we give the corresponding analysis from Figure 1 for NW. We see, first that there is some al-
gorithm in every instance that achieves within 0.1/m of NW (p∗), where p∗ is the NW optimizing
unconstrained distribution. This indicates that the cost of transparency to NW in practice is essen-
tially 0. We note that in a few instances, IP-NW, which should theoretically dominate all other
algorithms, is outperformed by either PIPAGE or BECK-FIALA. As we discuss in Appendix D.2,
this is due to small errors in the integer optimization errors.

We find that our theoretical upper bounds on NW loss are less useful than those on the Maximin
loss, because they are multiplied by an additional factor of k, while the value of the NW objective

9Clarification: Although we ran 1000 replicates of PIPAGE for our experiments, times below reflect one
single run of the algorithm.
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Table 2: Run-times for PIPAGE, BECK-FIALA, and IP-NW

Instance PIPAGE BECK-FIALA IP-NW

sf(a) 1.5 1.6 17.1
sf(b) 1.3 1.3 27.8
sf(c) 1.0 1.1 33.1
sf(d) 2.1 2.3 40.6
sf(e) 17.0 28.3 7245∗
cca 4.4 6.4 7207∗
hd 1.5 1.7 120.1
mass 0.4 0.4 3.4
nexus 2.8 3.2 21.1
obf 2.3 2.4 22.3
ndem 2.2 2.6 34.8
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m = 1000
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Figure 3: m = 1000. Shaded regions extend from NW(p∗), the fairness of the optimal unconstrained
distribution, down to the minimum fairness implied by the tightest theoretical upper bound in that
instance (in all instances but “obf” Theorem 3.3 is tightest). Each algorithm or bound’s loss relative
to NW(p∗) is written above in the corresponding color. PIPAGE NW values are the average of 1000
runs (standard deviation <10e-17 in all instances).

falls within a similar range to the Maximin objective. We note, however, that these bounds would
be useful for larger m: currently, the maximum possible losses implied by the bounds fall between
191/m = 0.191 and 5922/m = 5.922. If we increased m by a factor of 100 to m = 100, 000 (this
would mean drawing 5 lottery balls instead of 3), then our bounds would be nearly tight to optimal
in multiple instances (e.g., in “sf(a)”, this would yield a loss of 0.008), and would be meaningful in
all instances.

D.4 Analysis of Leximin Preservation (Figures corresponding to Figure 2)

Here we give the corresponding analysis from Figure 2 for all other instances. In all instances, the
conclusions we draw are essentially the same as those drawn from Figure 2: in all instances, all algo-
rithms almost exactly preserve the Leximin-optimal marginals. Our theoretical bounds are meaning-
ful, but we consistently outperform them in practice. Note that in all figures, PIPAGE marginals are
the average of 1000 runs (maximum standard deviation of any marginal < 10e-14 in all instances).
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Figure 4: sf(b)
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Figure 5: sf(c)
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Figure 6: sf(d)
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Figure 7: sf(e)

27



agents sorted by marginal given by OPT
0.00

0.25

0.50

0.75

1.00

m
ar

gi
na

l p
ro

ba
bi

lit
y

12/m

p *

IP-Marginals
Pipage
Beck-Fiala

Figure 8: cca
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Figure 9: hd
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Figure 10: mass
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Figure 11: nexus
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Figure 12: obf
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Figure 13: ndem
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