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Abstract

Given n values possessed by n agents, we study
the problem of estimating the mean by truthfully
eliciting agents’ answers to multiple-choice ques-
tions about their values. We consider two natural
candidates for estimation error: mean squared er-
ror (MSE) and mean absolute error (MAE). We
design a randomized estimator which is asymp-
totically optimal for both measures in the worst
case. In the case where prior distributions over
the agents’ values are known, we give an optimal,
polynomial-time algorithm for MSE, and show
that the task of computing an optimal estimate
for MAE is #P-hard. Finally, we demonstrate
empirically that knowledge of prior distributions
gives a significant edge.

1. Introduction
Organizations often desire accurate estimates of population
statistics (e.g., the mean of a set of values) in settings where
eliciting exact values from agents is costly or impractical.
For instance, suppose that you sit on an admissions com-
mittee, and your committee’s task is to accurately estimate
the number of candidates who will accept their admission
offer, perhaps in order to decide how many more admissions
offers to extend (concretely, consider the problem of admit-
ting students in two waves corresponding to early action
and regular admission). This is a consequential problem;
there are significant direct and indirect costs associated with
having many more or fewer matriculants than intended.1

Without more information either about or from the admits,
this is hopeless. One potential approach is to ask each
admit to provide an estimate of the probability pi that the
admit matriculates, but this is problematic because each
admit may not know their own exact probability of accepting
the offer, and coming up with exact probabilities places
nontrivial cognitive loads on participants. Therefore, it
is more reasonable to ask a multiple-choice question of
the form, “How likely are you to accept this offer?” with
choices “High,” “Medium,” and “Low.” The task for the

1In fact, our work on this paper originated from thinking about
ways to address this problem in our institution.

university, then, is to reconstruct an accurate estimate of the
number of students who will accept their offers based on the
coarse-grained information yielded by these multiple-choice
queries. Specifically, the question is

“What collection of multiple-choice questions
should you ask, and how should you interpret
the answers so as to estimate the expected number
of matriculants as accurately as possible?”

1.1. Our Approach and Results

Consider n agents, where each agent i has a value pi ∈ [0, 1]
and p := (p1, . . . , pn) is the vector of all agents’ values. We
are interested in estimating ‖p‖1 =

∑n
i=1 pi.

We interpret multiple-choice questions as forming a partition
of [0, 1] into subsets X1, . . . , Xk, and asking agent i for
the index j such that pi ∈ Xj . It is known (Lambert &
Shoham, 2009) that in order for multiple-choice questions to
elicit truthful responses, each Xj must itself be an interval.
Moreover, intervals are easier to interpret than arbitrary
subsets; for example, the choice “Low” can be defined as
pi ∈ [0, 1/3]. Therefore, we restrict our multiple-choice
questions to this framework.

Our goal is to design an estimator that consists of a set
of (possibly different) multiple-choice questions which are
posed to the agents, together with a function that outputs
an estimate of ‖p‖1 based on the agents’ answers to the
multiple-choice questions; we denote the output of the es-
timator by q(p). We measure the accuracy of the estimator
using the mean squared error (MSE) E[(‖p‖1 − q(p))2] or
the mean absolute error (MAE) E[|‖p‖1 − q(p)|].2

We consider two settings corresponding to different levels of
information about the agent’s values. When no information
about p is known (worst case), we consider the problem of
designing a randomized estimator with good worst-case per-
formance (when averaged over the estimator’s randomness).
We give a single randomized estimator q̄ which guarantees

mse(q̄) = O
( n
k2

)
, mae(q̄) = O

(√
n

k

)
2Throughout, we evaluate additive error with respect to estimat-

ing the sum of the pi, from which the additive error with respect
to mean estimation can easily be derived.
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and demonstrate that this is asymptotically optimal for both
measures of error.

In the second setting, each pi is drawn from a known dis-
tribution Pi; we consider the problem of designing a deter-
ministic estimator which performs well on average (over the
randomness of the pi). We present an MSE-optimal estima-
tor, and show that the problem of devising an MAE-optimal
estimator is #P-hard.

Finally, we conduct experiments in the latter setting of
known distributions, in which we aim to quantify the benefit
of tailoring the estimator to the distributions. Focusing on
the MSE due to our computational results, we show that the
optimal estimator significantly outperforms a naı̈ve estima-
tor.

1.2. Related Work

Caragiannis et al. (2016) study strategyproof mean esti-
mation in a related setting, where strategic agents supply
samples in order to move the estimation of the mean close
to their own value. In this setting, they ask if the sample
median is the best truthful estimator of the population mean,
which is not the case, and characterize worst-case optimal
truthful estimators that provably outperform the median for
distributions with bounded support.

More broadly, mechanism design for information elicitation
has been widely studied in computer science and economics
(Zohar & Rosenschein, 2008; Chen & Kash, 2011; Wag-
goner & Chen, 2014). Many prior works in mechanism
design focus on eliciting truthful signals from agents, often
through direct verification mechanisms like strictly proper
scoring rules (Gneiting & Raftery, 2007; Brier, 1950; Good,
1952; Winkler, 1969) and prediction markets (Wolfers &
Zitzewitz, 2004; Berg et al., 2008). In a related vein,
Radanovic & Faltings (2014) developed a mechanism for
truthful elicitation of continuous signals, but we consider the
problem of reconstructing a continuous value from discrete
reports.

Additionally, Soloviev & Halpern (2018) consider the prob-
lem of acquiring information with resource limitations,
where budget constraints on the number of tests in their
setting roughly map to constraints in our setting on the gran-
ularity of queries. However, their setting involves noisy tests
of Boolean formula truth values, as opposed to estimating a
population statistic.

Furthermore, by considering estimation error as it varies
over a range of k, we can investigate the relationship be-
tween the elicitation of values and the accuracy of our es-
timate, a tradeoff which has been studied for intelligent
decision-making systems in a sequential setting by Boutilier
(2002).

Alternatively, the task of optimally estimating
∑
i pi in

terms of MSE or MAE can be viewed as variants of k-means
and k-medians clustering, respectively. On the one hand, it
resembles a special case of clustering in that P is product
distribution over [0, 1]n (as opposed to a general distribu-
tion over a metric space), and our ‘clusters’ C correspond to
vectors p which yield the same vector of multiple-choice an-
swers, and the C are constrained to have a product structure
as well. On the other hand, it is distinct from clustering in
that r reports scalar representative `1 norms for the clusters,
and so we take the `1 norm of our C before calculating
error.

This line of inquiry is also related to the notion of ap-
proximate query processing (AQP) in the data mining and
databases literature, which is the practice of answering ex-
pensive aggregation queries with limited resources. Multiple
research groups have focused on the bounded-error estima-
tion of aggregates (e.g., sums of values in a database), but
mostly through sampling techniques as opposed to summa-
rization approaches (Jagadish et al., 1998; Chaudhuri et al.,
2007; 2001; Babcock et al., 2003). More recently, there
has been some work on summarizing data distributions with
histograms in order to minimize the `2 distance between
the distribution and the histogram approximation (Acharya
et al., 2015; Ding et al., 2016), but this only coincides with
our MSE setting when we query exactly one agent.

2. The Model
We consider a set of agents [n] = {1, . . . , n}, each with an
associated number pi ∈ [0, 1].

Our goal is to devise a scheme for estimating the sum
‖p‖1 =

∑n
i=1 pi (or, equivalently, the mean) to minimize

additive error. We may ask each agent i which of k intervals
contains their pi, and so our estimator chooses n partitions
Bi := {Bi,1, . . . , Bi,k} of [0, 1] into intervals, and for each
i the function bi : [0, 1]→ [k] poses the question to agent i
and returns their response; bi(pi) = j if pi ∈ Bi,j . We refer
to b(p) := (b1(p1), . . . , bn(pn)) as the classifier. Next the
aggregator r : [k]n → R takes the agents’ responses and
estimates

∑
i pi; we refer to the output of r as the report.

In order to ensure agents truthfully report which interval
their pi falls in, we propose to pay agents based on their
eventual decision and their report. In the setting of school
admission, for instance, this payment may b e a (partial)
refund of each student’s application fee. To this end, we
build on work by Lambert & Shoham (2009) that studies
the problem of eliciting truthful answers to multiple-choice
questions. In their framework, payments based on agent
reports and the observed outcome are used to induce truth-
ful answers from agents, and they establish necessary and
sufficient conditions on the structure of multiple-choice
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questions that ensure the existence of such payments. In
our setting, their characterization implies that we can elicit
truthful answers (i.e., there exists a payment scheme that
incentivizes truthful reporting) if and only if the questions
we ask are of the form, “To which of these intervals does
your pi belong?”

Let ci := bi(pi) denote the answer of each agent to this
question. For c ∈ [k]n, the box Cc :=

∏
iBi,ci = b−1(c) is

the set of (p1, . . . , pn) for which each agent i answers ci.
In terms of the classifier and aggregator, our goal may be
restated as finding the estimator

q := r ◦ b : [0, 1]n → R

that minimizes expected error.

We consider two natural measures of error, mean squared
error (MSE) and mean absolute error (MAE), which are
defined to be

mse(q) = E
[
(‖p‖1 − q(p))

2
]
,

mae(q) = E [|‖p‖1 − q(p)|] .

When the Pi are adversarially chosen, these expectations
are taken over the randomness of the estimator; when each
pi is drawn from a known distribution Pi, these expectations
are taken over the product distribution P .

Finally, throughout the paper we denote the centroid of
C ⊂ Rn by µ(C). More formally,

µ(C) :=
1

P (C)

∫
C

p dP,

where P is a measure on Rn.

3. Worst-Case Guarantees
In this section we consider the case where no knowledge of
the pi is assumed, and establish upper and lower bounds on
the performance of deterministic and randomized estima-
tors.

First, suppose that the estimator q = r ◦ b is deterministic.
For fixed b, it is clear that r should report the sum corre-
sponding to the center point of each box Cc =

∏
iBi,ci ,

since this minimizes the worst-case error across all p ∈ Cc.
Accordingly, an adversary will seek the box with the largest
`1 diameter, which can be identified by finding the Bi,j
of maximum diameter for each i. Therefore the worst-
case optimal deterministic estimator chooses equipartitions
Bi =

{
[0, 1

k ], . . . , [k−1
k , 1]

}
, reports the `1 norm of the cen-

ter of each box, and satisfies

max
p

(‖p‖1 − q(p))
2 =

n2

4k2

max
p
|‖p‖1 − q(p)| =

n

2k
,
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Figure 1: An illustration of q̄ for n = 2 and k = 3. Here
(r1 ◦ b̄1)(p1) = 1/2 and (r2 ◦ b̄2)(p2) = 1/2, and so
q̄(p) = 1/2 + 1/2 = 1. The box C(2,2) is highlighted.

and this is clearly tight. This is the uniform estimator, and
we will denote it qU := rU ◦ bU , where bU partitions each
[0, 1] into equal-size subintervals, and rU (c) is the `1 norm
of the center of each Cc.

A randomized estimator, however, can perform significantly
better over worst-case inputs. Indeed, consider the follow-
ing randomized estimator, which we denote by q̄ = r ◦ b̄.
We construct a randomized classifier by choosing “shifts”
si ∈ [0, 1

k−1 ) for each i uniformly and independently. Take

b̄i(pi) := j s.t.
j − 1

k − 1
≤ pi + si <

j

k − 1
.

Intuitively, this partitions [0, 1] into k subintervals by taking
the k− 1 thresholds 1/(k− 1), . . . , 1 and shifting them left
by si. Then make the (deterministic) reports

ri(j) :=
j − 1

k − 1

for j ∈ [k], and define b̄(q) := (b̄1(p1), . . . , b̄n(pn)) and
take the aggregator r(c) := r1(c1) + . . .+ rn(cn). Putting
these together yields the randomized estimator

q̄ := r ◦ b̄,

which is illustrated in Figure 1.

Our main result for this section is the following theorem.

Theorem 1. In the worst-case setting, the randomized esti-
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mator q̄ satisfies

mse(q̄) = O
(
n/k2

)
mae(q̄) = O

(√
n/k

)
.

Moreover, these bounds are asymptotically optimal for both
measures of error.

The rest of the section is devoted to proving the theorem.
We do so via several lemmas, starting with the upper bound.

Lemma 1. The randomized estimator q̄ satisfies

mse(q̄) = O
(
n/k2

)
mae(q̄) = O

(√
n/k

)
.

Proof. For fixed p, we begin by analyzing the estimator
coordinate-by-coordinate. Take

Xi := pi − (ri ◦ b̄i)(pi)

to be the (signed) error of q̄ in coordinate i, and let
ji := max{j ∈ [k] : j−1

k−1 ≤ pi}. If

zi := pi(k − 1)− (ji − 1)

is the proportion of the way between multiples of 1/(k − 1)
that pi falls, then Xi = (zi − 1)/(k − 1) with probability
zi and Xi = zi/(k − 1) with probability 1− zi. Note that
E[Xi] = 0. By the definition of r and the independence of
the Xi,

mse(q̄(p)) = E

(∑
i

Xi

)2
 =

∑
i

Var [Xi]

=
∑
i

z2
i (1− zi) + zi(1− zi)2

(k − 1)2
≤ n/4

(k − 1)2

= O
( n
k2

)
.

We now turn to the MAE case. Note that Xi is bounded in
some range of width 1/(k − 1), and that

mae(q̄(p)) = E[|‖p‖1 − q̄(p)|] = E

[∣∣∣∣∣∑
i

Xi

∣∣∣∣∣
]
.

Next we apply Hoeffding’s inequality in order to upper
bound this expectation. By Hoeffding (1963),

Pr

[∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

{
−2t2

n
(k−1)2

}
,

and so choosing t = m
√
n/(k − 1) for m ∈ N yields

Pr

[∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ ≥ m
√
n

(k − 1)

]
≤ 2

e2m2 . (1)

Finally, let X :=
∑
iXi and observe that for any σ > 0,

mae(q̄(p)) = E [|X|]

≤
∞∑
m=1

σmPr [|X| ∈ [σ(m− 1), σm]]

≤
∞∑
m=1

σmPr [|X| ≥ σ(m− 1)] .

Taking σ =
√
n/(k − 1) and applying Equation (1),

≤
√
n

k − 1

∞∑
m=1

2m

e2(m−1)2
.

This infinite series converges, which implies that
mae(q̄(p)) = O(

√
n/k), as desired.

By Yao’s minimax principle (Yao, 1977), in order to derive
a lower bound for all randomized algorithms, it suffices to
fix a distribution over inputs and lower bound the average
performance of any deterministic algorithm over this ran-
domized input. To this end, we will consider the uniform
distribution over [0, 1]n, which we denote D, and lower
bound the performance of any deterministic estimator over
it. In doing so, we will prove the intuitive fact that the
uniform estimator qU = rU ◦ bU is optimal for D.

First we present a structural lemma about the optimal ag-
gregator r for any fixed classifier b. Let S(C,P ) denote
the probability distribution over R derived by taking the `1
norm of C:

Pr[S ≤ x] = Pr
P

[‖p‖1 ≤ x|p ∈ C].

We will repeatedly make use of the following insight, which
follows from calculus and reflects one of Lloyd’s optimality
conditions for k-means clustering (Lloyd, 1982):

Lemma 2. For p ∼ P and for fixed b, the MSE- and MAE-
optimal aggregators r1

b (c) and r2
b (c) (respectively) report

the means and medians (respectively) of S(Cc, P ) for all
c ∈ [k]n.

With this in hand, we are ready to analyze the performance
of qU over D, which (by Yao’s minimax principle) estab-
lishes the lower bound of Theorem 1.

Lemma 3. If p ∼ D is drawn uniformly at random then the
uniform estimator qU = rU ◦ bU is optimal in terms of both
MSE and MAE, and

mae(qU ) = Ω
(
n/k2

)
,

mae(qU ) = Ω
(√
n/k

)
.

Proof. This follows in two steps. We will first prove that
the uniform strategy qU = rU ◦ bU is optimal for MSE and
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compute mse(qU ) directly. Then we will prove that qU is
optimal for MAE, and finally lower bound mae(qU ).

To begin, note that under the uniform distribution P = D
and for fixed b, Lemma 2 implies that for both MSE and
MAE, the optimal aggregator is the rb which reports the `1
norms of the centers of the Cc. Therefore we may assume
that all estimators use reports rb which are optimal for their
b, and argue that bU is the best partitioning.

The MSE case boils down to a question of variance, and it
turns out we can compute the error directly. As before, let

Xi :=

k∑
j=1

1{pi∈Bi,j} (pi − µ(Bi,j))

be the (signed) error in coordinate i, the difference between
their actual pi and the center µ(Bi,j) of the interval Bi,j
containing their pi. Then because the pi are independent
and

rb(c) = µ (S (Cc, D)) =
∑
i

µD(Bi,ci),

we have that for q = rb ◦ b:

mse(q) = ED
[
(‖p‖1 − q(p))

2
]

= ED

(∑
i

Xi

)2


= Var

[∑
i

Xi

]
=
∑
i

Var[Xi] =
∑
i

∫ 1

0

X2
i dx

=
∑
i

∑
j

∫
Bi,j

(x− µD(Bi,j))
2 dx

=
∑
i

∑
j

1

12
diam(Bi,j)

3.

At this point, the method of Lagrange multipliers confirms
that MSE is minimized when all Bi,j are of equal diameter
1/k, which yields precisely bU . Therefore qU = rU ◦ bU is
optimal for D, and it has cost mse(qU ) = n/12k2.

We now turn to MAE, and use a differential argument
to prove that qU is MAE-optimal when P = D. We
begin by showing that the MAE contributed by a box
Cc is convex in each of the dimensions of Cc. This
will let us argue that for any classifier b with partitions
{Bi} in which one partition is unbalanced, meaning that
for some i (say i = 1) and some j it is the case that
diam(B1,j) < diam(B1,j+1), the b? which equalizes their
widths decreases the MAE: mae(rb? ◦ b?) < mae(rb ◦ b).
This then implies that qU = rU ◦ bU is MAE-optimal, since
it is the only b which cannot be equalized in this way.

To see that MAE contribution is convex in each dimen-
sion of C, let C ′ :=

∏n
i=2[−wi, wi] and consider the box

C(t) := [−t, t]× C ′. Then by Lemma 2 the optimal report

for both C and C ′ is 0. Let the contribution to MAE by C
with report r be denoted e(C, r), and call the contribution
with optimal report e(C). Then by symmetry,

e(C(t), 0) =

∫
C(t)

∣∣∣∣∣∑
i

pi

∣∣∣∣∣ dp
= 2

∫ t

0

∫
C′

∣∣∣∣∣x+

n∑
i=2

pi

∣∣∣∣∣ dp dx
= 2

∫ t

0

e(C ′, x) dx,

and therefore

de(C(t), 0)

dt
= 2e(C ′, t).

The (omitted) proof of Lemma 2 shows that de(C,r)dr > 0 for
r greater than the optimal report, and so

d2e(C(t), 0)

dt2
> 0,

as desired.

In order to show that b? improves upon b, note that their
boxes Cc differ only for those of the form

Ĉc := B1,j ×
n∏
i=2

Bi,ci , C̃c := B1,j+1 ×
n∏
i=2

Bi,ci

Pairing these up by c, it suffices to show that for each c,

e(Ĉ?c ) + e(C̃?c ) < e(Ĉc) + e(C̃c),

where C?c are the boxes given by b?. This follows from
the convexity of e(C) in each dimension of C, established
above. We conclude that qU is MAE-optimal.

We next lower bound mae(qU ). Let L ⊆ [n] and H ⊆ [n]
be the set of indices i with errors Xi that are negative and
positive, respectively. It holds that

mae(qU ) = E

∣∣∣∣∣∣
∑
i∈[n]

(pi − qU (pi))

∣∣∣∣∣∣


= E

[∣∣∣∣∣∑
i∈L

Xi +
∑
i∈H

Xi

∣∣∣∣∣
]
.

We establish that L and H are, with constant probability, of
sufficiently different sizes to lead to

√
n/k error. First, note

that because we are playing against a uniform adversary, the
probability that each pi is in L is 1/2; the probability that
each pi is in H is symmetrically 1/2. Because these are
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just Bernoulli random variables, applying the De Moivre-
Laplace theorem (a version of the Central Limit Theorem)
tells us that, as n becomes large, the sum of these Bernoulli
random variables converges to a normal distribution with
mean n/2 and standard deviation

√
n/2. Therefore, we

know that with constant probability, the total number of
agents in H is at least

√
n from its mean of n/2, that is,

Pr
[
||H| − E[|H|]| ≥

√
n
]

= β

for a constant β. It follows that, with constant probability β,
||L| − |H|| ≥ 2

√
n; denote this event by E . Therefore,

mae(qU ) = E

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
]

≥ E

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣ E
]
· Pr[E ]

= E

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣ E
]
· β.

(2)

Now assume that E occurred Without loss of generality,
assume that |L| ≤ |H| and, in particular, randomly break
H up into two sets, H1 and H2, such that |H1| = |L| and
|H2| ≥ 2

√
n. By construction of H1, the sum of the errors

in indices i ∈ L tH1 is symmetric with mean 0. It holds
that

E

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣ E
]

= E

[∣∣∣∣∣ ∑
i∈L∪H1

Xi +
∑
i∈H2

Xi

∣∣∣∣∣
∣∣∣∣∣ E
]

≥ Pr

[∣∣∣∣∣ ∑
i∈L∪H1

Xi

∣∣∣∣∣ ≥ 0

∣∣∣∣∣ E
]
E

[∣∣∣∣∣∑
i∈H2

Xi

∣∣∣∣∣
∣∣∣∣∣ E
]

≥ 1

2
· 2
√
n · 1

4k
= Ω

(√
n

k

)
.

The desired bound follows by combining this with Equa-
tion (2).

4. Estimation with Priors
In practice, it is useful to go beyond worst-case guarantees
and ask to what degree knowing some additional informa-
tion about the pi can improve our ability to estimate their
sum. Specifically, suppose that we have access to distribu-
tions P1, . . . , Pn from which the pi are drawn; we make the
standard assumption (for computational complexity results)
that these distributions are discrete. Can we design a more
accurate estimator that takes prior knowledge into account?

For instance, in our running example of admissions (say
for a Ph.D. program), one could easily come up with pri-
ors by applying machine learning to historical admissions

data. The prior for a candidate would, of course, depend
on relevant features such as their alma mater and research
interests.

It is important to note that, in this setting, the optimal estima-
tor is deterministic, as the error of a randomized estimator
is just a convex combination of deterministic estimators in
its support.

4.1. An Efficient Estimator for MSE

When estimation is evaluated according to MSE, it turns out
that we can answer the foregoing question in the positive:

Theorem 2. Given discrete priors Pi for each pi, i ∈ [n],
there is a polynomial-time estimator that is optimal with
respect to MSE.

A key component of our analysis is the following structural
insight:

Lemma 4. Given an estimator q = rb ◦ b, where rb reports
optimally for a given classifier b, mseP (q) =

∑
imsePi(qi),

where qi = rbi ◦ bi.

We will prove this by employing a result from the vector
quantization literature. In quantization, roughly speaking,
the task is to compress some signal using only a representa-
tive subset of its values in such a way that compression error
is minimized. Vector quantization performs this task for
vector-valued signals, and does so using an n-dimensional
partition (Gray & Neuhoff, 1998). Since it typically seeks an
MSE-error-minimizing vector representative ~r(c) for each
box Cc in its n-dimensional partition, vector quantization
may be seen as an instance of kn-means clustering in Rn
subject to the constraint that all clusters obey this product-
of-partitions structure. In this setting, it is known (Jégou
et al., 2011) that if the partitions are made along indepen-
dent axes, then the MSE of the optimal vector quantizer is
additive:

Lemma 5. If ~q is a vector quantizer as described
above which reports the centroids µ(Cc) for every
Cc, and is given by ~r(c) = (r1(c1), . . . , rn(cn)) and
b(p) = (b1(p1), . . . , bn(pn)), then

EP
[
‖p− ~q(p)‖22

]
=
∑
i

EPi

[
(pi − ri(bi(pi)))2

]
, (3)

where each ri reports the centroid µ(Bi,j).

This is a direct consequence of independence of the pi,
together with the fact that the Xi have mean 0.

The key difference between our problem and the vector
quantization setting is that we measure error with respect
to the aggregate

∑
i pi, which means errors with respect to

individual agents can “cancel out.” Nevertheless, the same
structural insight holds, as we show now.
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Proof of Lemma 4. We proceed in two steps. First we argue
that for fixed classifier b, the optimal report rb reports the
`1 norm rb(c) = ‖µP (Cc)‖1 of the centroid of each box
Cc. Next, we argue that this coincides with the error given
on the right-hand side of Equation (3); the theorem then
follows.

We begin by showing that the optimal aggregator reports
rb(c) = ‖µP (Cc)‖1. As in Lemma 3, let e(C, r) denote
the contribution of C =

∏
iBi to MSE under report r. We

proceed via a differential argument:

e(C, r) =

∫
C

(‖p‖1 − r)
2 dP

= r2

∫
C

dP − 2r

∫
C

‖p‖1 dP +

∫
C

‖p‖21 dP

de(C, r)

dr
= 2r

∫
C

dP − 2

∫
C

‖p‖1 dP.

Setting de(C,r)
dr = 0 yields the optimal report,

r? =
1

P (C)

∫
C

‖p‖1 dP =
1

P (C)

(∑
i

∫
C

pi dP

)

=
1∏

i Pi(Bi)

∑
i

∫
Bi

pi dPi
∏
j 6=i

∫
Bj

dPj


=
∑
i

1

Pi(Bi)

∫
Bi

pi dPi =
∑
i

µPi
(Bi)

= ‖µP (C)‖1,

where this last step is a standard property of the centroid.

Therefore for q = rb ◦ b, the error mse(q) takes the form

mseP (q) =
∑
c∈[k]n

∫
Cc

(‖p‖1 − ‖µ(Cc)‖1)
2
dP

=
∑
c∈[k]n

∫
Cc

(∑
i

(pi − µPi
(Bi,ci))

)2

dP.

Since the centroid is an unbiased estimator,

=
∑
c∈[k]n

∫
Cc

∑
i

(pi − µPi
(Bi,ci))

2
dP

= EP
[
‖p− ~q(p)‖22

]
,

as in the right-hand side of Equation (3). Therefore by
Lemma 5,

=
∑
i

EPi

[
(pi − µ(Bi,ci))

2
]

=
∑
i

msePi
(qi).

Proof of Theorem 2. Our goal is to minimize mseP (q), and
Lemma 4 implies that this can be accomplished by individu-
ally minimizing msePi(rbi ◦ bi) for each i ∈ [n]. Since the
Pi are discrete distributions, finding the bi which minimizes
msePi

(rbi ◦ bi) is precisely an instance of one-dimensional
Euclidean k-means. It is well-known that this can be solved
efficiently via dynamic programming using a recurrence de-
scribed by Jensen (1969). Therefore, given priors Pi we can
derive an estimator q which minimizes mse(q): we first find
b?1, . . . , b

?
n which minimize msePi

(r2
bi
◦ bi) for each i ∈ [n],

where r2
bi

is the optimal aggregator for bi, then take the
optimal partitions

b(p) = (b?1(p1), . . . , b?n(pn)) .

Lemma 4 then guarantees that this q = r2
b ◦b is optimal.

4.2. Hardness for MAE

In contrast to the case of MSE with priors, it turns out that
devising an MAE-optimal mean estimation strategy is #P-
hard.

To be concrete, the computational problem is defined as
follows: Given a collection of discrete prior distributions
P1, . . . , Pn and a positive integer k, we are asked for a
collection of partitions bi : [0, 1] → [k] and an aggregator
r : [k]n → R which together minimize

mae(r ◦ b) = EP [|‖p‖1 − r ◦ b(p)|] ,

where P =
∏
i Pi.

Theorem 3. Given discrete priors Pi for each pi, i ∈ [n],
the problem of computing an optimal estimator with respect
to MAE is #P-hard.

The proof of the theorem is relegated to Appendix A. In a
nutshell, we prove the theorem through a pair of reductions;
beginning with the counting version of KNAPSACK, which
is #P-complete, we show that the problem of finding a
median of the sum of the (independent) Bernoulli random
variables αiBernoulli(p) is #P-complete. We then describe
a way to derive distributions P1, . . . , Pn from a collection
of weighted Bernoulli random variables such that devising
an MAE-optimal strategy for P1, . . . , Pn finds a median of
the weighted Bernoulli sum.

5. Experiments
In Section 4 we showed that when prior distributions are
known, the optimal estimator with respect to the MSE can
be computed in polynomial time. However, it is reasonable
to ask to what degree incorporating these prior distributions
leads to more accurate estimation schemes for plausible
families of prior distributions. In this section we aim to
answer this question. We focus on the MSE as our measure
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Figure 2: MSE of the uniform and optimal estimators, averaged over 100 distributions sampled from the Gaussian family.
Bars are standard error of the mean.

of error, because Theorem 3 shows that an optimal estimator
with respect to MAE is hard to compute.

In more detail, we compare the MSE-optimal prior-sensitive
estimator of Theorem 2 to the deterministic worst-case opti-
mal strategy described in Section 3, which does not incor-
porate knowledge of prior distributions. This is the uniform
estimator, which for all i ∈ [n] partitions the ith interval
into equal intervals of length 1/k. It is pointless to use the
more elaborate randomized estimator of Theorem 1, because
when instances are drawn from a distribution, randomiza-
tion does not help: for any randomized estimator there is a
deterministic estimator that performs at least as well.

We compare the two estimation schemes (optimal and uni-
form) on discrete distributions drawn from three families:
uniform, Gaussian, and bimodal. Recall that in our model
prior distributions are comprised of m atoms. For each
choice of number of agents n, number of intervals k, and
family of distributions, we generate instances as follows:
we sample n discrete prior distributions of m uniformly
weighted atoms, one distribution per agent. For the fam-
ily of uniform distributions, each sampled distribution is
formed by drawing m samples from U(0, 1); for the Gaus-
sian family, each sampled distribution is formed by drawing
m samples from a truncated Gaussian over the domain [0, 1]
with mean µ and standard deviation σ drawn i.i.d. from
U(0, 1); and for the bimodal family, each sampled distribu-
tion is formed by drawing m samples from an equal mixture
of two truncated Gaussians over the domain [0, 1], each
again with µ and σ drawn i.i.d. from U(0, 1). We then in-
dependently sample a number of points from each of the
agents’ discrete distributions to form a collection of draws
p ∼ P , and evaluate the performance of both the uniform
and MSE-optimal estimators on these draws.

Figure 2 shows sample averages of MSE for both the uni-

form and optimal estimators applied to distributions from
the Gaussian family, for a range of n and for fixed k = 3, or
for a range of k and fixed n = 50. The MSE for each pair
of generated distribution P and estimator is measured as an
average over 1000 draws p ∼ P . For a fixed value of k, as
n increases, the optimal estimator significantly outperforms
the uniform estimator, suggesting that knowledge of the dis-
tribution gives a significant benefit in practice. Additional
figures and simulation details can be found in Appendix B.

6. Discussion
Although we have assumed throughout that pi ∈ [0, 1], the
results in Section 3 can be generalized to general bounded
pi. Similarly, the optimal strategy described in Section 4.1
holds for prior distributions over unbounded pi ∈ R.

There are also promising avenues for future work to extend
our results to richer settings. For instance, in Section 4
we assume that the prior distributions Pi are given to us.
However, it would be interesting to consider the setting in
which the Pi are initially unknown but gradually discovered
over rounds of questions; i.e., a learning setting where the
elicitation scheme learns the prior distributions Pi in the
course of accurately estimating the mean of the pi.

Moreover, while we have focused on estimating ‖p‖1, one
may ask if it is possible to estimate other functions of p. For
instance, can the median of the pi be efficiently and accu-
rately estimated in this multiple-choice question setting?

Future work may also explore how our results carry over
to settings in which the error metric is asymmetric: For
instance, it may be more costly to underestimate than over-
estimate the size of a matriculating class due to space and
resource constraints, and an optimal estimator would take
this cost asymmetry into account.
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Appendix

A. Proof of Theorem 3
To prove the theorem, we reduce from the following problem. Given a rational x ∈ [0, 1] and nonnegative integer weights
α1, . . . , αn, WEIGHTED-BINOMIAL-MEDIAN (WBM) asks for a median of the random variable

Z :=

n∑
i=1

αi Bernoulli(x),

where the Bernoulli(x) are independent (and identically distributed).

This weighted binomial distribution (WBD) is comparable to the Poisson binomial distribution (PBD) in that both generalize
the binomial distribution. However the PBD is an unweighted sum of Bernoulli random variables with distinct probabilities
xi, while the WBD is a sum of Bernoulli random variables with a common x but distinct integer weights.
Lemma 6. WBM is #P-Hard.

Proof. In order to show to show that WBM is #P-complete, we will reduce from the counting version of the knapsack
problem, which is known to be #P-complete (Garey & Johnson, 1979): Given a list of nonnegative integer weights
w1, . . . , wn and an integer capacity W , #Knapsack asks how many sets S ⊆ [n] exist such that

∑
i∈S wi ≤W . And we

will make use of a slight variant of counting knapsack: Given an integer k, a list of nonnegative integer weights w1, . . . , wn
an integer capacity W , and an integer threshold N , k#Knapsack finds |S|, where

S := {S ⊆ [n] :
∑
i∈S

wi ≤W and |S| = k}.

It can be seen that k#Knapsack is #P-complete via an easy reduction from #Knapsack: given an instance of #Knapsack,
simply query k#Knapsack for all values of k and return the sum of the answers.

Turning to the hardness of WBM, we begin by arguing that WBM may be assumed to return the largest possible median.
This is because, for an instance of WBM given by (x, α1, . . . , αn), we may instead take a perturbed probability x̄ = x+ γ.
By choosing γ small enough, we can ensure that the median m̄ of Z̄ :=

∑
i αiBernoulli(x̄) is a median of Z, but that it is

the largest possible such median. Informally, we may tweak x gently enough that we preserve the median but break any
median ties.

Formally, let FZ be the cumulative density function (CDF) of Z. Since Z is a distribution comprised solely of atoms of
weight xk(1− x)n−k for k ∈ [n], it suffices to find some perturbation γ for which

FZ(m)− FZ̄(m) < a,

where m is a median of Z and a is a lower bound on the size of an atom in both Z and Z̄. To show that we may choose
such an a, note we may assume that (1 − x)n ≤ 1/2, since otherwise the largest possible m is 0, and similarly that
x̄n ≤ 1/2, since otherwise we may easily check if the largest possible m is

∑
i∈[n] αi. Among all Z for which xn ≤ 1/2

and (1− x)n ≤ 1/2, the smallest possible atom is of size 1
2 (21/n − 1)n, and so a := 1/nn is a lower bound on the atom

size in Z for any value of x that concerns us.

Since Z is atomic, we then have that

FZ(y) =
∑
z≤y

Pr[Z = z] (4)

=
∑
S⊆[n]

x|S|(1− x)n−|S| 1{
∑

i∈S wi ≤ y} (5)

and so

∂FZ(y)

∂x
≤
∑
S⊆[n]

∂

∂x
x|S|(1− x)n−|S| ≤ n2n. (6)
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Therefore taking γ = a
n2n will suffice, and x̄ = x+ γ will have a binary representation which is polynomial in the number

of input bits.

We now reduce from k#Knapsack. Given an instance of k#Knapsack described by (k,w1, . . . wn,W ), let Γ := 〈k〉 +∑
i〈wi〉+ 〈W 〉 be the length of the binary representation of these integers. For each i, let

αi := G+ wi,

where G := (n + 1)
∑
i wi. If Z =

∑
i αiBernoulli(x) for some rational x ∈ [0, 1], then since the wi are positive, the

support of Z is clustered to the left of the integers 0, G, . . . , nG. Specifically, we have by Equation (5) that

FZ(Gk) =
∑
S⊆[n]

x|S|(1− x)n−|S| 1{
∑

i∈S wi ≤Gk}

=

k−1∑
j=0

(
n

j

)
xj(1− x)n−j ,

and so FZ(Gk) can be computed in time polynomial in Γ + 〈x〉.

Next, with k given, consider a binary search over (rational) xwhich searches for the largest possible x for whichm ≤ Gk+W .
Once the binary search is far enough along and the change in x is sufficiently small, FZ(m) approaches 1/2 and the remaining
change possible in FZ(m) will be small with respect to the atomic lower bound a. We may terminate our search, say, when
FZ(m) ∈ [1/2, 1/2 + a/10]. At this point m is the largest value of size at most Gk+W in the support of Z, and so by this
maximality of m ≤ Gk +W ,

FZ(m) =
∑
S⊆[n]

x|S|(1− x)n−|S| 1{
∑

i∈S wi ≤m}

=

k−1∑
j=0

(
n

j

)
xj(1− x)n−j + |Sk|xk(1− x)n−k.

At this point a is much smaller than the other terms, and we may solve for |Sk|, round, and solve k#Knapsack:

|Sk| ∈
1/2± a/10−

∑k−1
j=0

(
n
j

)
xj(1− x)n−j

xk(1− x)n−k

It remains only to justify that this binary search for x terminates sufficiently quickly. By Equation (6) in order to guarantee
that FZ(m) is within a/10 of 1/2 it suffices to guarantee that the binary search step for x has size at most a

10n2n . This
requires log

(
10nn+12n

)
steps, which is polynomial in n.

Proof of Theorem 3. We reduce from WBM. If k = 1 then the reduction is immediate: if each of the Pi is a scaled down
copy of αiBernoulli(x), then finding the optimal report for the random variable

∑
i Pi amounts to finding the (scaled down)

median of
∑
i αiBernoulli(x).

More generally, given an instance of WBM described by (x, α1, . . . , αn), we will construct an instance of our problem,
MAE-ESTIMATOR, for any k ≥ 2 for which determining optimal partitions and reporting scheme will solve our instance of
WBM.

Our Pi will be discrete distributions given by

Pr

[
pi =

1

2k

]
=

1− x
k

(7)

Pr

[
pi =

1 + δ αi∑
t αt

2k

]
=
x

k
(8)

Pr

[
pi =

2j − 1

2k

]
=

1

k
for j = 2, . . . , k . (9)
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We will choose δ small enough such that the optimal partition of each of the Pi necessarily groups the atoms described in
Equation (7) and Equation (8) together, and gives each of the atoms of Equation (9) its own interval in the partition. To
find such a δ, first consider the “good” case when the partitions are of this form. In this case, there are kn total boxes, each
with weight 1/kn. Within each box C, the distribution of `1 norms has range upper bounded by δ/(2k). Within each C,
the range of this distribution is an upper bound on the `1 distance between any atom in C and the optimal report for C.
Therefore, a loose upper bound on total MAE is ∑

c∈[k]n

P (Cc)
δ

2k
=

δ

2k
. (10)

On the other hand, consider the “bad” case when at least one of the partitions groups either two of the Equation (9) atoms
together or the Equation (8) atom together with at least one of the Equation (9) atoms. Assume without loss of generality
that the i = 1 partitioning is “bad”. We will focus on the case when an Equation (8) and at least one Equation (9) atom are
grouped together (because it is an interval, necessarily j = 2 is included), since in the best case it is the least costly scenario.
Because of the product structure of the boxes induced by the partitions, for every pair of vectors u and u′ in the support of P
of the form

u =

(
1 + δ αi∑

j αj

2k
, u−

)
u′ =

(
3

2k
, u−

)
,

where u− ∼
∏n
j=2 Pj , necessarily u and u′ are contained in the same box. Therefore among each pair of u and u′, at least

Mu− = min{x,1−x}
k

∏n
j=2 Pj(u

−
j ) mass must travel ‖u′‖1 − ‖u‖1 to the estimate for their shared box, which yields a lower

bound on the error of ∑
u−

(
1− δ
k

Mu−

)
=

(1− δ) min{x, 1− x}
k2

. (11)

By Equations (10) and (11), choosing a δ < min{x,1−x}
k guarantees that the optimal partitioning for our instance is the

“good” partitioning, and so all of the Equation (7) and Equation (8) atoms appear in the same box C? :=
∏
iBi,1.

Recall that by Lemma 2, the MAE-minimizing estimate for a fixed box C is a median of the distribution of `1 norms of the
vectors u ∈ C according to P . Therefore MAE-ESTIMATOR finds some MAE-optimal report r? for the box C?, which
by Equation (7) and Equation (8) implies that r

?−n/2k
δ is a median of

∑
i αiBernoulli(x), solving the given instance of

WBM.

B. Additional Experiments
Here we give a more thorough account of the experimental performance of the MSE-optimal estimation scheme as compared
to the uniform estimation scheme, benchmarked against the families of distributions described in Section 5.
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Figure 3: MSE of the uniform and optimal algorithms for fixed n = 50 and a range of k, averaged over 100 distributions
sampled from the various families. Bars are standard error of the mean.
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Figure 4: MSE of the uniform and optimal algorithms for fixed k = 3 and a range of n, averaged over 100 distributions
sampled from various families. Bars are standard error of the mean.

Figure 3 shows their relative performance for a fixed value of n = 50 and a range of possible k, with constant sample
distribution support of size 100. On the other hand, Figure 4 shows their relative performance for a fixed value of k = 3 and
a range of possible n, again with constant sample distribution support of size 100.


