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Example: Facility Location

Random Order:
c(connect i)

. 8-approx [Meyerson '01]: open arriving 1 w.p. .
c(open 1)

« 3-approx [Kaplan Naori Raz '23]

Prophets and Samples:

: » 6-approx for single-sample prophet problem
« 6-approx for two-stage prophet problem

» 3/a-approx for with-a-sample problem
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Parting Comments

* Prophet algorithms are universal (can pre-commit to covering decisions)

» Counterpart: packing single-sample prophet — RO reduction [Azar Kleinberg Weinberg '14]

* Reductions work for adaptive-order algos, not just RO

 Dependence on a for with-a-sample results may not be tight
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