Set Covering with Our Eyes Wide Shut

Anupam Gupta (NYU)

Gregory Kehne (UT Austin)

January 10, 2024

Roie Levin (Rutgers)

SODA 2024

 $\max c \cdot x$ $1 \cdot x \le 1$ $x \in \{0,1\}^m$

 $\max c \cdot x$ $1 \cdot x \le 1$ $x \in \{0,1\}^m$

max $c \cdot x$ $1 \cdot x \leq 1$ $x \in \{0,1\}^m$

 c_i arrive online •

max $c \cdot x$ $1 \cdot x \leq 1$ $x \in \{0,1\}^m$

- c_i arrive online lacksquare
- ullet

adversarial instance + order: intractable

max $c \cdot x$ $1 \cdot x \leq 1$ $x \in \{0,1\}^m$

- c_i arrive online ullet
- adversarial instance + order: intractable lacksquare
- RO, stochastic: tractable (1/e, 1/2)ullet

 $\max c \cdot x$ $1 \cdot x \le 1$ $x \in \{0,1\}^m$

max $c \cdot x$

max $c \cdot x$

Arrivals

Sets

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

min $c \cdot x$ $A_1 \cdot x \ge 1$ $A_n \cdot x \ge 1$ $x \in \{0,1\}^m$

Goals:

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

 S_5

Online Set Cover:

Goals:

 S_6

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Online Set Cover:

 $\min c \cdot x$ $A_1 \cdot x \ge 1$ $A_n \cdot x \ge 1$ $x \in \{0,1\}^m$

Goals:

 S_6

- Satisfy constraints online
- Buy each x_S irrevocably
- Compete with offline OPT

Prophet Covering

- n known constraint distributions \mathscr{D}_i
- Round *i*: draw $v_i \sim \mathcal{D}_i$, then satisfy it
- Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

Prophet Covering

- n known constraint distributions \mathcal{D}_i
- Round *i*: draw $v_i \sim \mathcal{D}_i$, then satisfy it
- Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

sampled constraints $v_i \sim \mathcal{D}_i$

Prophet Covering

- n known constraint distributions \mathcal{D}_i
- Round *i*: draw $v_i \sim \mathcal{D}_i$, then satisfy it
- Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

sampled constraints $v_i \sim \mathcal{D}_i$

Prophet Covering

- n known constraint distributions \mathcal{D}_i
- Round *i*: draw $v_i \sim \mathcal{D}_i$, then satisfy it
- Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

sampled constraints $v_i \sim \mathcal{D}_i$

Adversarial

ce Adversarial

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

ce Adversarial

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

What makes online set cover (online covering) harder than offline?

The Landscape

RO

Adversarial

Arrival Order

Stochastic

$O(\log mN)$

[Grandoni Gupta Leonardi Miettinen Sankowski Singh '08]

ce Adversarial

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

What makes online set cover (online covering) harder than offline?

RO

Adversarial

Arrival Order

Stochastic

$O(\log mN)$

[Grandoni Gupta Leonardi Miettinen Sankowski Singh '08]

constraints i.i.d. from known ${\mathscr D}$

ce Adversarial

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

What makes online set cover (online covering) harder than offline?

here n = # elements m = # sets N = universe size

RO

Adversarial

Arrival Order

Stochastic

$O(\log mN)$

[Grandoni Gupta Leonardi Miettinen Sankowski Singh '08]

constraints i.i.d. from known ${\mathscr D}$

ce Adversarial

(secretary setting)

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

What makes online set cover (online covering) harder than offline?

here n = # elements m = # sets N = universe size

RO

Adversarial

Arrival Order

Stochastic

$O(\log mN)$

[Grandoni Gupta Leonardi Miettinen Sankowski Singh '08]

constraints i.i.d. from known \mathcal{D}

Adversarial

 $\Theta(\log mn)$ [Gupta K Levin '21]

(secretary setting)

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

What makes online set cover (online covering) harder than offline?

here n = # elements m = # sets N = universe size

RO

Adversarial

Arrival Order

Stochastic

$O(\log mN)$

[Grandoni Gupta Leonardi Miettinen Sankowski Singh '08]

constraints i.i.d. from known \mathcal{D}

(prophet setting)

constraints indep. from \mathcal{D}_i

Adversarial

 $\Theta(\log mn)$ [Gupta K Levin '21]

(secretary setting)

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

What makes online set cover (online covering) harder than offline?

here n = # elements m = # sets N = universe size

RO

Adversarial

Arrival Order

Stochastic

$O(\log mN)$

[Grandoni Gupta Leonardi Miettinen Sankowski Singh '08]

constraints i.i.d. from known \mathcal{D}

(prophet setting)

constraints indep. from \mathcal{D}_i

Adversarial

 $\Theta(\log mn)$ [Gupta K Levin '21]

(secretary setting)

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

What makes online set cover (online covering) harder than offline?

here n = # elements m = # sets N = universe size

Adversarial

 $\Theta(\log mn)$ [Gupta K Levin '21]

(secretary setting)

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

What makes online set cover (online covering) harder than offline?

here n = # elements m = # sets N = universe size

Adversarial

 $\Theta(\log mn)$ [Gupta K Levin '21]

(secretary setting)

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

What makes online set cover (online covering) harder than offline?

here n = # elements m = # sets N = universe size

Adversarial

 $\Theta(\log mn)$ [Gupta K Levin '21]

(secretary setting)

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03]

[Korman '04]

What makes online set cover (online covering) harder than offline?

here n = # elements m = # sets N = universe size

(2-stage prophet) (with-a-sample)

Adversarial

(secretary setting)

• Covering IPs + box constr.

- Covering IPs + box constr.
- Covering IPs

- Covering IPs + box constr.
- Covering IPs
- Set Cover

- Covering IPs + box constr.
- Covering IPs
- Set Cover
- Set Multicover

- Covering IPs + box constr.
- Covering IPs
- Set Cover
- Set Multicover
- Metric Facility Location

- Covering IPs + box constr.
- Covering IPs
- Set Cover
- Set Multicover
- Metric Facility Location
- Nonmetric Facility Location

Prophet

- n known constraint distributions \mathcal{D}_i
- Round *i*: draw $v_i \sim \mathcal{D}_i$, then satisfy it
- Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

Prophet

- n known constraint distributions \mathcal{D}_i
- Round *i*: draw $v_i \sim \mathcal{D}_i$, then satisfy it
- Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

Prophet

- *n* known constraint distributions \mathscr{D}_i
- Round *i*: draw $v_i \sim \mathcal{D}_i$, then satisfy it
- Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

2-Stage Prophet

- *n* known constraint distributions \mathcal{D}_i
- Beforehand: buy partial solution
- Round *i*: draw $v_i \sim \mathcal{D}_i$, satisfy at cost $\times \lambda$
- Goal: compete with 2-stage online OPT

Prophet

- *n* known constraint distributions \mathcal{D}_i
- Round *i*: draw $v_i \sim \mathcal{D}_i$, then satisfy it
- Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

2-Stage Prophet

- *n* known constraint distributions \mathcal{D}_i
- Beforehand: buy partial solution
- Round *i*: draw $v_i \sim \mathcal{D}_i$, satisfy at cost $\times \lambda$
- Goal: compete with 2-stage online *OPT*

Prophet

- *n* known constraint distributions \mathscr{D}_i
- Round *i*: draw $v_i \sim \mathcal{D}_i$, then satisfy it
- Goal: compete with $\mathbb{E}_{\mathcal{D}}[OPT(v_1, ..., v_n)]$

2-Stage Prophet

- *n* known constraint distributions \mathcal{D}_i
- Beforehand: buy partial solution
- Round *i*: draw $v_i \sim \mathcal{D}_i$, satisfy at cost $\times \lambda$
- Goal: compete with 2-stage online OPT

With-a-Sample

- Adversarial arrivals $(v_1, ..., v_i, ..., v_n)$
- Beforehand: observe each v_i w.p. $\alpha \in [0,1]$
- Round *i*: see v_i , then satisfy it

Prophet (Single Sample)

- Observe a sample $\hat{v}_i \sim \mathcal{D}_i$ from each \mathcal{D}_i
- Round *i*: draw $v_i \sim \mathcal{D}_i$, then satisfy it
- Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

2-Stage Prophet (from Samples)

- Observe λ samples $\hat{v}_i \sim \mathcal{D}_i$ from each \mathcal{D}_i
- Beforehand: buy partial solution
- Round *i*: draw $v_i \sim \mathcal{D}_i$, satisfy at cost $\times \lambda$
- Goal: compete with 2-stage online *OPT*

With-a-Sample

- Adversarial arrivals $(v_1, ..., v_i, ..., v_n)$
- Beforehand: observe each v_i w.p. $\alpha \in [0,1]$
- Round *i*: see v_i , then satisfy it

Set cover: (single sample prophet)

- *n* unknown $\mathcal{D}_1, ..., \mathcal{D}_n$
- Observe *n* samples $\hat{v}_i \sim \mathcal{D}_i$
- Round *i*: draw constraint $v_i \sim \mathcal{D}_i$

and buy a set to satisfy it

• Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

Set cover: (single sample prophet)

- *n* unknown $\mathcal{D}_1, ..., \mathcal{D}_n$
- Observe *n* samples $\hat{v}_i \sim \mathcal{D}_i$
- Round *i*: draw constraint $v_i \sim \mathcal{D}_i$

and buy a set to satisfy it

• Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

Set cover: (single sample prophet)

- *n* unknown $\mathcal{D}_1, ..., \mathcal{D}_n$
- Observe *n* samples $\hat{v}_i \sim \mathcal{D}_i$
- Round *i*: draw constraint $v_i \sim \mathcal{D}_i$

and buy a set to satisfy it

• Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

Set cover: (single sample prophet)

- *n* unknown $\mathcal{D}_1, ..., \mathcal{D}_n$
- Observe *n* samples $\hat{v}_i \sim \mathcal{D}_i$
- Round *i*: draw constraint $v_i \sim \mathcal{D}_i$

and buy a set to satisfy it

• Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

Set cover: (single sample prophet)

- *n* unknown $\mathcal{D}_1, ..., \mathcal{D}_n$
- Observe *n* samples $\hat{v}_i \sim \mathcal{D}_i$
- Round *i*: draw constraint $v_i \sim \mathcal{D}_i$

and buy a set to satisfy it

• Goal: compete with $\mathbb{E}_{\mathscr{D}}[OPT(v_1, ..., v_n)]$

SSP Set Cover

```
given samples \hat{v}_i \sim \mathcal{D}_i
run ROSC algo on \hat{v}_1, \ldots, \hat{v}_n
\mathscr{C} = sets ROSC algo buys
for v_i arriving uncovered (round t):
   if v_i \in C for some C \in \mathscr{C}:
      buy this C
    else:
      (Backup)
      buy arbitrary S \ni v_i
```

<u>Theorem</u> (Gupta K Levin): This reduction to ROSC is an $O(\log mn)$ -approximation for SSP Set Cover.


```
given samples \hat{v}_i \sim \mathcal{D}_i
run ROSC algo on \hat{v}_1, \ldots, \hat{v}_n
\mathscr{C} = sets ROSC algo buys
for v_i arriving uncovered (round t):
   if v_i \in C for some C \in \mathscr{C}:
      buy this C
   else:
      (Backup)
      buy arbitrary S \ni v_i
```


 v_i backup costs satisfy

<u>Theorem</u> (Gupta K Levin): This reduction to ROSC is an O(log mn)-approximation for SSP Set Cover.

$$] = \mathbb{E}[c(\text{LoC}(v_1, ..., v_n))]$$
$$\leq O(\log mn) \cdot \mathbb{E}[OPT]$$

by [GKL21]

 $\mathbb{E}[c(v_i \text{ backup})] \leq \mathbb{E}[c(\text{LoC } \hat{v}_i \text{ backup})]$ $\mathbb{E}[c(v_i \text{ backups})] \leq \mathbb{E}[c(\text{LoC}(v_1, \dots, v_n))].$


```
given samples \hat{v}_i \sim \mathcal{D}_i
run ROSC algo on \hat{v}_1, \ldots, \hat{v}_n
\mathscr{C} = sets ROSC algo buys
for v_i arriving uncovered (round t):
   if v_i \in C for some C \in \mathscr{C}:
      buy this C
   else:
      (Backup)
      buy arbitrary S \ni v_i
```


Proof: $\mathbb{E}[c(\mathscr{C})]$

 v_i backup costs satisfy

<u>Theorem</u> (Gupta K Levin): This reduction to ROSC is an O(log mn)-approximation for SSP Set Cover.

$$] = \mathbb{E}[c(\text{LoC}(v_1, ..., v_n))]$$
$$\leq O(\log mn) \cdot \mathbb{E}[OPT]$$

by [GKL21]

 $\mathbb{E}[c(v_i \text{ backup})] \leq \mathbb{E}[c(\text{LoC } \hat{v}_i \text{ backup})]$ $\implies \mathbb{E}[c(v_i \text{ backups})] \leq \mathbb{E}[c(\text{LoC}(v_1, \dots, v_n))].$


```
given samples \hat{v}_i \sim \mathcal{D}_i
run ROSC algo on \hat{v}_1, \ldots, \hat{v}_n
\mathscr{C} = sets ROSC algo buys
for v_i arriving uncovered (round t):
   if v_i \in C for some C \in \mathscr{C}:
      buy this C
   else:
      (Backup)
      buy arbitrary S \ni v_i
```


Proof: $\mathbb{E}[c(\mathscr{C})]$

 v_i backup costs satisfy

<u>Theorem</u> (Gupta K Levin): This reduction to ROSC is an O(log mn)-approximation for SSP Set Cover.

$$] = \mathbb{E}[c(\text{LoC}(v_1, ..., v_n))]$$
$$\leq O(\log mn) \cdot \mathbb{E}[OPT]$$

by [GKL21]

 $\mathbb{E}[c(v_i \text{ backup})] \leq \mathbb{E}[c(\text{LoC } \hat{v}_i \text{ backup})]$

 $\implies \mathbb{E}[c(v_i \text{ backups})] \leq \mathbb{E}[c(\text{LoC}(v_1, \dots, v_n))].$


```
ROSC algo (Learn or Cover)
 (estimate k = |OPT|)
 initialize x \leftarrow k/m
 for \hat{v}_i arriving uncovered (round t)
        (Cover)
        buy random S \sim x
        (Learn)
       if x_{\hat{v}} \leq (e-1)^{-1}:

x_{S} \leftarrow e \cdot x_{S} for all S \ni \hat{v}_{i}

x \leftarrow k \frac{x}{\|x\|}
        buy arbitrary S \ni \hat{v}_i
       buy arbitrary S \ni v_i
```

<u>Theorem</u> (Gupta K Levin): This reduction to ROSC is an $O(\log mn)$ -approximation for SSP Set Cover.


```
ROSC algo (Learn or Cover)
 (estimate k = |OPT|)
 initialize x \leftarrow k/m
 for \hat{v}_i arriving uncovered (round t)
                                                           \mathbb{E}[c(v_i)]
        (Cover)
        buy random S \sim x
        (Learn)
       if x_{\hat{v}} \leq (e-1)^{-1}:

x_{S} \leftarrow e \cdot x_{S} for all S \ni \hat{v}_{i}

x \leftarrow k \frac{x}{\|x\|}
         (Backup)
        buy arbitrary S \ni \hat{v}_i
        buy arbitrary S \ni v_i
```

<u>Theorem</u> (Gupta K Levin): This reduction to ROSC is an $O(\log mn)$ -approximation for SSP Set Cover.

backup)]
$$\leq \mathbb{E}[c(\text{LoC }\hat{v}_i \text{ backup})]$$

• $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$


```
ROSC algo (Learn or Cover)
 (estimate k = |OPT|)
 initialize x \leftarrow k/m
 for \hat{v}_i arriving uncovered (round t)
          (Cover)
         buy random S \sim x
         (Learn)
         \begin{array}{l} \text{if } x_{\hat{v}} \leq (e-1)^{-1}: \\ x_{S} \leftarrow e \cdot x_{S} \text{ for all } S \ni \hat{v}_{i} \\ x \leftarrow k \frac{x}{\|x\|} \end{array} 
         buy arbitrary S \ni \hat{v}_i
         buy arbitrary S \ni v_i
```

- - $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$
 - Pr[v_i arr. uncovered] only decreases after LoC

- - $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$
 - Pr[v_i arr. uncovered] only decreases after LoC

- - $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$ • Pr[v_i arr. uncovered] only decreases after LoC

s
$$\hat{v}_3 \hat{S}$$

- - $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$ • Pr[v_i arr. uncovered] only decreases after LoC

$$\hat{v}_3 \ \hat{S}_3 \qquad \hat{v}_i \ \hat{S}_i$$

- - $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$ • Pr[v_i arr. uncovered] only decreases after LoC

$$\mathbf{s} \quad \hat{v}_1 \quad \hat{S}_1 \qquad \qquad \hat{v}_3 \quad \hat{S}_3 \qquad \qquad \hat{v}_i \quad \hat{S}_i$$

- - $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$ • Pr[v_i arr. uncovered] only decreases after LoC

- **RO samples** $\hat{v}_1 \hat{S}_1 \qquad \hat{v}_2 \qquad \hat{v}_3 \hat{S}_3$ $\hat{v}_i \hat{S}_i$

- - $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$ • Pr[v_i arr. uncovered] only *decreases* after LoC

- **RO samples** $\hat{v}_1 \hat{S}_1 \qquad \hat{v}_2 \qquad \hat{v}_3 \hat{S}_3$ $\hat{v}_i \hat{S}_i$ $\hat{v}_n \hat{S}_n$

- - $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$ • Pr[v_i arr. uncovered] only decreases after LoC

- **RO samples** $\hat{v}_1 \hat{S}_1 \quad \hat{v}_2 \quad \hat{v}_3 \hat{S}_3 \quad \cdots \quad \hat{v}_i \hat{S}_i$ $\hat{v}_n \hat{S}_n$

- - $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$ • Pr[v_i arr. uncovered] only decreases after LoC

- **RO samples** $\hat{v}_1 \hat{S}_1 \quad \hat{v}_2 \quad \hat{v}_3 \hat{S}_3 \quad \cdots \quad \hat{v}_i \hat{S}_i \quad \cdots \quad \hat{v}_n \hat{S}_n$

- - $\Pr[\hat{v}_i \text{ arr. uncovered}] = \Pr[v_i \text{ arr. uncovered}]$ • Pr[v_i arr. uncovered] only decreases after LoC

- **RO samples** $\hat{v}_1 \hat{S}_1 \quad \hat{v}_2 \quad \hat{v}_3 \hat{S}_3 \quad \cdots \quad \hat{v}_i \hat{S}_i \quad \cdots \quad \hat{v}_n \hat{S}_n$
 - Adv. seq. $v_1 S_1$

- - Pr[\$\hat{v}_i\$ arr. uncovered] = Pr[\$v_i\$ arr. uncovered]
 Pr[\$v_i\$ arr. uncovered] only *decreases* after LoC

- **RO samples** $\hat{v}_1 \hat{S}_1 \quad \hat{v}_2 \quad \hat{v}_3 \hat{S}_3 \quad \cdots \quad \hat{v}_i \hat{S}_i \quad \cdots \quad \hat{v}_n \hat{S}_n$
 - Adv. seq. $v_1 S_1 = v_2 S_2$

- - Pr[\$\hat{v}_i\$ arr. uncovered] = Pr[\$v_i\$ arr. uncovered]
 Pr[\$v_i\$ arr. uncovered] only decreases after LoC

- **RO samples** $\hat{v}_1 \hat{S}_1 \quad \hat{v}_2 \quad \hat{v}_3 \hat{S}_3 \quad \cdots \quad \hat{v}_i \hat{S}_i \quad \cdots \quad \hat{v}_n \hat{S}_n$
 - Adv. seq. $v_1 S_1 = v_2 S_2 = v_3$

<u>Theorem</u> (Gupta K Levin): This reduction to ROSC is an $O(\log mn)$ -approximation for SSP Set Cover.

- - Pr[\$\hat{v}_i\$ arr. uncovered] = Pr[\$v_i\$ arr. uncovered]
 Pr[\$v_i\$ arr. uncovered] only decreases after LoC

RO samples \hat{v}_1 \hat{s}_1 \hat{v}_2 \hat{v}_3 \hat{s}_3 \cdots \hat{v}_i \hat{S}_i \cdots \hat{v}_n \hat{s}_n Adv. seq. v_1 S_1 v_2 S_2 v_3 \cdots \cdots \hat{v}_n \hat{s}_n

<u>Theorem</u> (Gupta K Levin): This reduction to ROSC is an $O(\log mn)$ -approximation for SSP Set Cover.

- - Pr[\$\hat{v}_i\$ arr. uncovered] = Pr[\$v_i\$ arr. uncovered]
 Pr[\$v_i\$ arr. uncovered] only decreases after LoC

RO samples \hat{v}_1 \hat{s}_1 \hat{v}_2 \hat{v}_3 \hat{S}_3 \cdots \hat{v}_i \hat{S}_i \cdots \hat{v}_n \hat{S}_n **Adv. seq.** v_1 S_1 v_2 S_2 v_3 \cdots v_i S_i

<u>Theorem</u> (Gupta K Levin): This reduction to ROSC is an $O(\log mn)$ -approximation for SSP Set Cover.

Pr[\$\hat{v}_i\$ arr. uncovered] = Pr[\$v_i\$ arr. uncovered]
Pr[\$v_i\$ arr. uncovered] only decreases after LoC

s
$$\hat{v}_1 \ \hat{S}_1$$
 \hat{v}_2 $\hat{v}_3 \ \hat{S}_3$ \cdots $\hat{v}_i \ \hat{S}_i$ \cdots $\hat{v}_n \ \hat{S}_n$
q. $v_1 \ S_1$ $v_2 \ S_2$ v_3 \cdots $v_i \ S_i$ \cdots

<u>Theorem</u> (Gupta K Levin): This reduction to ROSC is an $O(\log mn)$ -approximation for SSP Set Cover.

Pr[\$\hat{v}_i\$ arr. uncovered] = Pr[\$v_i\$ arr. uncovered]
Pr[\$v_i\$ arr. uncovered] only decreases after LoC

s
$$\hat{v}_1 \ \hat{S}_1$$
 \hat{v}_2 $\hat{v}_3 \ \hat{S}_3$... $\hat{v}_i \ \hat{S}_i$... $\hat{v}_n \ \hat{S}_n$
q. $v_1 \ S_1$ $v_2 \ S_2$ v_3 ... $v_i \ S_i$... $v_n \ S_n$

Prophet (Single Sample)

2-Stage Prophet (λ Samples)

Adversarial With-a-Sample

competitive ratio guarantee:

Prophet (Single Sample)

2-Stage Prophet (λ Samples)

Adversarial With-a-Sample

competitive ratio guarantee:

$2 \cdot \mathbb{E}[RO] = O(\log mn) \cdot OPT_{LP}$

Prophet (Single Sample)

2-Stage Prophet (λ Samples)

Adversarial With-a-Sample

competitive ratio guarantee:

$2 \cdot \mathbb{E}[RO] = O(\log mn) \cdot OPT_{LP}$

$2 \cdot \mathbb{E}[RO] = O(\log mn) \cdot OPT_{Online}$

Prophet (Single Sample)

2-Stage Prophet (λ Samples)

Adversarial With-a-Sample

competitive ratio guarantee:

$2 \cdot \mathbb{E}[RO] = O(\log mn) \cdot OPT_{LP}$

 $2 \cdot \mathbb{E}[RO] = O(\log mn) \cdot OPT_{Online}$

$\alpha^{-1} \cdot \mathbb{E}[RO] = O(\alpha^{-1} \log mn) \cdot OPT_{LP}$

More Generally,

RO algos for

Augmentable IPs:

- Covering IPs + box constr.
- Covering IPs
- Set Cover
- Set Multicover
- Metric Facility Location
- Nonmetric Facility Location

Prophet (Single Sample)

2-Stage Prophet (from Samples)

Adversarial With-a-Sample

More Generally,

RO algos for

Augmentable IPs:

• Covering IPs + box constr.

[GKL21]	 Covering IF 	P S		
[GKL21]	Set Cover			
this work	 Set Multicover 			
[Mey01]	 Metric Facility Location 			
this work	 Nonmetric Facility Location 			

Prophet (Single Sample)

2-Stage Prophet (from Samples)

Adversarial With-a-Sample

Random Order:

Random Order:

• 8-approx [Meyerson '01]: open arriving i w.p.

c(connect i)

Random Order:

- 8-approx [Meyerson '01]: open arriving i w.p.
- 3-approx [Kaplan Naori Raz '23]

c(connect i)

Random Order:

- 8-approx [Meyerson '01]: open arriving i w.p.
- 3-approx [Kaplan Naori Raz '23]

c(connect i)

Random Order:

- 8-approx [Meyerson '01]: open arriving i w.p.
- 3-approx [Kaplan Naori Raz '23]

c(connect i)

Random Order:

- 8-approx [Meyerson '01]: open arriving i w.p.
- 3-approx [Kaplan Naori Raz '23]

Prophets and Samples:

c(connect i)

Random Order:

- 8-approx [Meyerson '01]: open arriving i w.p.
- 3-approx [Kaplan Naori Raz '23]

Prophets and Samples:

• 6-approx for single-sample prophet problem

c(connect i)

Random Order:

- 8-approx [Meyerson '01]: open arriving i w.p.
- 3-approx [Kaplan Naori Raz '23]

Prophets and Samples:

- 6-approx for single-sample prophet problem
- 6-approx for two-stage prophet problem

c(connect i)

c(open i)

ophet problem et problem

Random Order:

- 8-approx [Meyerson '01]: open arriving i w.p.
- 3-approx [Kaplan Naori Raz '23]

Prophets and Samples:

- 6-approx for single-sample prophet problem
- 6-approx for two-stage prophet problem
- $3/\alpha$ -approx for with-a-sample problem

c(connect i)

Parting Comments

Parting Comments

- Prophet algorithms are *universal* (can pre-commit to covering decisions)
- Counterpart: *packing* single-sample prophet \rightarrow RO reduction [Azar Kleinberg Weinberg '14]
- Reductions work for *adaptive-order* algos, not just RO
- Dependence on α for with-a-sample results may not be tight

<u>gkehne@utexas.edu</u>

