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Set Cover

 sets|𝒮 | = m elements,|𝒰 | = n

min cTx
Ax ≥ 1

x ∈ {0,1}

Set Cover:

c ≥ 0
A ∈ {0,1}m×n

⋅ v1
⋅ v3

⋅ v5

⋅ v7

⋅ v4

⋅ v2

⋅ v8

⋅ v6

Goal: find the smallest (cheapest) cover of all of 
 using sets from 𝒰 = {v1, …, v8} 𝒮 = {S1, …, S6}



Online Set Cover Online Set Cover:

min cTx
Ax ≥ 1

x ∈ {0,1}

Goals: 

• Satisfy each constraint upon arrival

• Maintain a solution which is 

monotone increasing

• Compete with the best solution in 

retrospect  

Arrivals

Sets Bought

⋅ v1

⋅ v1

⋅ v2

⋅ v2

⋅ v3

⋅ v3

⋅ v4

⋅ v4

⋅ v5

⋅ v5

⋅ v6

⋅ v6

⋅ v7

⋅ v7

⋅ v8

⋅ v8

S4 S1 S5 S6 S1 S6



Online Set Cover in Random Order (RO)

Arrivals

Sets Bought

⋅ v1

⋅ v1

⋅ v2

⋅ v2

⋅ v3

⋅ v3

⋅ v4

⋅ v4

⋅ v5

⋅ v5

⋅ v6

⋅ v6

⋅ v7

⋅ v7

⋅ v8

⋅ v8

S4 S6

min cTx
aT

1 x ≥ 1
aT

2 x ≥ 1
⋮

aT
mx ≥ 1

x ∈ {0,1}

RO Set Cover:

Goal: Same as Online Set Cover, but 
compete in expectation over the 
randomness of the arrival orderS1



RO Covering Integer Programs (IPs)

Arrivals

Vars Bought

⋅ v1

⋅ v1

⋅ v2

⋅ v2

⋅ v3

⋅ v3

⋅ v4

⋅ v4

⋅ v5

⋅ v5

⋅ v6

⋅ v6

⋅ v7

⋅ v7

⋅ v8

⋅ v8

S4 S6 S1

min cTx
aT

1 x ≥ 1
aT

2 x ≥ 1
⋮

aT
mx ≥ 1

x ∈ {0,1,2,…}

RO Covering IP:

c ≥ 0
ai ∈ [0,1]m

S4 S2 S1 S2S1
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The Landscape

Offline

Online Adversarial

Online RO

Online Stochastic

log n + 1
[Johnson ’74], [Lovasz ’75], [Chvatal ’79]

O(log m log n)
[Alon Awerbuch Azar Buchbinder Naor ’03]

Ω(log m log n)
[Korman ’04]

Θ(log mn)
[Grandoni Gupta Leonardi Miettinen Sankowski Singh ’08]

Θ(log mn)
[Gupta K. Levin ’21]

Theorem: (Gupta K. Levin):  
There is a randomized 
poly-time algorithm for RO 
covering IPs with an 
expected competitive ratio 
of O(log mn)



The Landscape from a different view

Stochastic Adversarial

RO
Ad

ve
rs

ar
ia

l

Ar
riv

al
 O

rd
er

Instance

Θ(log m log n)
[Alon Awerbuch Azar Buchbinder Naor ’03]
[Korman ’04]

Θ(log mn)
[Grandoni Gupta Leonardi

Miettinen Sankowski Singh ’08]

constraints are i.i.d. samples 
from known 𝒟

(prophet setting)

(secretary setting)

Θ(log mn)
[this talk]

What makes online 
integer covering 
(online set cover) 

harder than offline?


constraints are independent 
samples from known 𝒟i

 ?Θ(log mn)
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Warmup: LearnOrCover (proof of concept)

 sets|𝒮 | = m
 elements|𝒰 | = n

min 1Tx
aT

1 x ≥ 1
aT

2 x ≥ 1
⋮

aT
n x ≥ 1

x ∈ {0,1}

Unit-Cost Set Cover:

ai ∈ {0,1}m

How can we get a (randomized) 
-approximation to ROSC 

online, supposing 

• all sets have unit cost, and

• we are allowed exponential time?

O(log mn)



Warmup: LearnOrCover (proof of concept)

𝒰  𝒰

𝒫  𝒮


𝒫

  guess  and set k = |OPT | 𝒫0

for  arriving uncovered:v

choose T ∼ 𝒫t

buy S ∼ T

𝒫t+1 ← 𝒫t∖{T ∌ v}
(Learn)

(Cover)

buy arbitrary S ∋ v
(Backup)

Case 1:  of  cover  of 


 covers at least  elements in expectation


 in expectation.

≥ 1/2 T ∈ 𝒫t ≥ 1/2 𝒰t

S
|𝒰t |
4k

|𝒰t+1 | ≤ (1 −
1
4k ) |𝒰t |

Case 2:  of  cover  of 


at least  of  pruned in expectation


 in expectation.

> 1/2 T ∈ 𝒫t < 1/2 𝒰t

1/4 T ∈ 𝒫t

|𝒫t+1 | ≤
3
4

|𝒫t |

𝒰

⋅ v1

⋅ v3

⋅ v5

⋅ v7

⋅ v4

⋅ v2

⋅ v8

⋅ v6



Warmup: LearnOrCover (proof of concept)

𝒰 𝒫

Potential:   


every step decreases  by  in expectation, so  steps suffice!

Φ(t) = k log |𝒰t | + log |𝒫t |
0 ≤ Φ(0) ≤ k log n + k log m

Φ(t) Ω(1) OPT ⋅ O(log mn)

Case 1:  of  cover  of ≥ 1/2 T ∈ 𝒫t ≥ 1/2 𝒰t Case 2:  of  cover  of > 1/2 T ∈ 𝒫t < 1/2 𝒰t

𝔼 |𝒫t+1 | ≤
3
4

|𝒫t |𝔼 |𝒰t+1 | ≤ (1 −
1
4k ) |𝒰t |

, so  Learn steps suffice|𝒫0 | ≤ mk O(k log m), so  Cover steps suffice|𝒰0 | = n O(k log n)

In other words:

Once  or  we are done, so  steps suffice! 𝔼 |𝒰t | = 1 𝔼 |𝒫t | = 1 OPT ⋅ O(log mn)

In expectation over the randomness of 
the arrival order + the algorithm, its 
solution will cost  times the 
cost of the optimal offline solution.

O(log mn)
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LearnOrCover in Polynomial Time

Potential:    Φ(t) = c1 ⋅ KL(x*∥xt) + c2 ⋅ k log |𝒰t |

(unit cost: )c = 1

  (estimate )k = |OPT |

for  arriving uncovered (round )v t

buy random S ∼ x
(Learn)

(Cover)

buy arbitrary S ∋ v

initialize x ← k /m

if :xv ≤ (e − 1)−1

 for all xS ← e ⋅ xS S ∋ v

x ← k
x

∥x∥
(Backup) Case 2: 𝔼v[xv] ≤ 1/4

Case 1: 𝔼v[xv] > 1/4

Claim 1:  and Φ(0) = O(k log mn) Φ(t) ≥ 0

Claim 2:  whenever  arrives uncovered𝔼[ΔΦ] ≤ − 1 v

expected change to  is k log |𝒰t | −Ω(1)

expected change to  is KL(x*∥xt) −Ω(1)

Claim 1  Claim 2  LearnOrCover has  CR∧ ⇒ O(log mn) is coverage of  by xv = ∑
S∋v

xS v x

KL(x*∥xt) = ∑
S

x*S log (
x*S
xt

S )

 and are nonincreasingKL(x*∥xt) k log |𝒰t |



LearnOrCover in Polynomial Time
  (estimate )k = |OPT |

for  arriving uncovered (round )v t

buy random S ∼ x
(Learn)

(Cover)

buy arbitrary S ∋ v

(unit cost: )c = 1

initialize x ← k /m

if :xv ≤ (e − 1)−1

 is coverage of  by xv = ∑
S∋v

xt−1
S v xt−1

 for all xS ← e ⋅ xS S ∋ v

x ← k
x

∥x∥
(Backup)

Lemma 1: if , then the expected 
change to  is .

𝔼v[xv] > 1/4
k log |𝒰t | −Ω(1)

Proof:
log |𝒰t | − log |𝒰t−1 | = log (1 −

|𝒰t−1 | − |𝒰t |
|𝒰t−1 | )

≤
−1

|𝒰t−1 | ∑
v∈𝒰t−1

𝕀{S ∋ v}

k𝔼S[Δ log |𝒰t | ] ≤
−k

|𝒰t−1 | ∑
S

xt−1
S

k ∑
v∈𝒰t−1

𝕀{S ∋ v}

=
−1

|𝒰t−1 | ∑
v∈𝒰t−1

∑
S∋v

xt−1
S

= − 𝔼v[xv]



LearnOrCover in Polynomial Time
  (estimate )k = |OPT |

for  arriving uncovered (round )v t

buy random S ∼ x
(Learn)

(Cover)

buy arbitrary S ∋ v

(unit cost: )c = 1

initialize x ← k /m

if :xv ≤ (e − 1)−1

 is coverage of  by xv = ∑
S∋v

xt−1
S v xt−1

 for all xS ← e ⋅ xS S ∋ v

x ← k
x

∥x∥
(Backup)

Lemma 2: if , then the expected 
change to  is .

𝔼v[xv] ≤ 1/4
KL(x*∥xt) −Ω(1)

Proof:

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S ) = ∑

S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ( 1
k ∑

T

xt−1
T ⋅ e𝕀{T∋v}) − ∑

S∋v

x*S log e

≤ k log ( 1
k ∑

S

xt−1
S +

1
k ∑

S∋v

(e − 1) ⋅ xt−1
S ) − 1

= ∑
S

x*S log (xt−1
S

∑T xt−1
T ⋅ e𝕀{T∋v}

k ⋅ xt−1
S ⋅ e𝕀{S∋v} )

≤ (e − 1) ⋅ xv − 1

 𝔼v[ΔKL] ≤ − Ω(1)



LearnOrCover in Polynomial Time
Potential:    Φ(t) = c1 ⋅ KL(x*∥xt) + c2 ⋅ k log |𝒰t |

(unit cost: )c = 1

Claim 1:  and Φ(0) = O(k log mn) Φ(t) ≥ 0

Theorem (Gupta K. Levin): LearnOrCover has a 
competitive ratio of  for unit-cost RO set cover.O(log mn)

  (estimate )k = |OPT |

for  arriving uncovered (round )v t

buy random S ∼ x
(Learn)

(Cover)

buy arbitrary S ∋ v

initialize x ← k /m

if :xv ≤ (e − 1)−1

 for all xS ← e ⋅ xS S ∋ v

x ← k
x

∥x∥
(Backup)

 is coverage of  by xv = ∑
S∋v

xS v x

Claim 2:  whenever  arrives uncovered𝔼[ΔΦ] ≤ − 1 v

expected change to  is k log |𝒰t | −Ω(1)
or expected change to  is KL(x*∥xt) −Ω(1)

 and are nonincreasingKL(x*∥xt) k log |𝒰t |

punchline: 0 ≤ 𝔼[Φ(t)] ≤ Φ(0) − Ω(t)



Potential:    Φ(t) = c1 ⋅ KLw(x*∥xt) + c2 ⋅ k log |ρt /k |

Claim 1:  and Φ(0) = O(k log mn) Φ(t) ≥ 0

LearnOrCover OSC with General Costs
  (estimate )k = c(OPT)

for  arriving uncovered (round )v t

sample  worth of cv S ∼ x
(Learn)

(Cover)

buy  costing S ∋ v cv

initialize x ← k /(cS ⋅ m)

if :xv ≤ (e − 1)−1

xS ← xS ⋅ e 𝕀{S∋v} cv
cS

x ← k
x

∥x∥
(Backup)

cost of cheapest cv ← S ∋ v

Theorem (Gupta K. Levin): LearnOrCover has a 
competitive ratio of  for RO set cover.O(log mn)

Claim 2:  whenever  arrives uncovered𝔼[ΔΦ] ≤ − cv v

expected change to  is k log |𝒰t | −Ω(cv)
or expected change to  is KL(x*∥xt) −Ω(cv)

 and are nonincreasingKL(x*∥xt) k log |𝒰t |

spend  per step, so  nonincreasing.O(cv) 𝔼[c(LoC) + Φ]

KLw(x*∥xt) = ∑
S

cS ⋅ x*S log (
x*S
xt

S ) ρt = ∑
v∈𝒰





LearnOrCover for RO Covering IPs
  (estimate )k = c(OPT)

for  arriving uncovered (round )v t

sample  worth of cv S ∼ x
(Learn)

(Cover)

buy  costing S ∋ v cv

initialize x ← k /(cS ⋅ m)

if :xv ≤ (e − 1)−1

xS ← xS ⋅ e 𝕀{S∋v} cv
cS

avS

x ← k
x

∥x∥
(Backup)

cost of cheapest covercv ←

Theorem (Gupta K. Levin): LearnOrCover has a 
competitive ratio of  for RO CIP.O(log mn)

…very similar! 


Major changes are:

• incorporating partial coverage: 
measure  according to 
remaining uncoverage, sample 
“sets” according to 


•analysis of  is 
more involved (independent 
sampling with partial coverage)

ρt

avS

𝔼[Δ log |𝒰 | ]



min cTx
Ax ≥ 1

x ∈ {0,1,2,…}

c ≥ 0
A ∈ [0,1]m×n

RO Covering IP:
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LearnOrCover: Two Informal Views
KL Projection

x1

x2

OPT

v2

v1

v3 v4

•One analysis of the primal-dual 
algorithm for adversarial order 
OSC casts it as iteratively 
performing a KL projection onto 
the feasible region.

•LoC does something similar, but 
renormalizs the weight of .

•Is there a primal-dual 
interpretation of LoC?

xt



LoC as Sample-Efficient Greedy

Can the distribution  be seen as 
maintaining a noisy estimate of which set 
provides the most marginal coverage?

x

while there are  uncoveredv
𝒰0 ← [n]

Greedy (offline)

buy  maximizing S ∈ 𝒮 S ∩ 𝒰t

𝒰t+1 ← 𝒰t∖S

  (estimate )k = |OPT |

for  arriving uncovered (round )v t

buy random S ∼ x
(Learn)

(Cover)

buy arbitrary S ∋ v

initialize x ← k /m

if :xv ≤ (e − 1)−1

 for all xS ← e ⋅ xS S ∋ v

x ← k
x

∥x∥
(Backup)

LoC (unit cost)
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Theorem (Gupta K. Levin): Batched RO set cover is 
 for  batches of size Ω(log b log s) b s

Two natural ways to relax random Order assumption:

Relax the entropy of the distribution over arrival orders?

Allow constraints to arrive in randomly-ordered batches:

It quickly becomes easy to embed hard instance in the 
arrival sequence

…so what else is LearnOrCover good for? 

Lower Bounds for ROSC



The Landscape (again)

Stochastic Adversarial

RO
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ve
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Instance

Θ(log m log n)
[Alon Awerbuch Azar Buchbinder Naor ’03]
[Korman ’04]

Θ(log mn)
[Grandoni Gupta Leonardi

Miettinen Sankowski Singh ’08]

constraints are i.i.d. samples 
from known 𝒟

(prophet setting)

(secretary setting)

Θ(log mn)
[this talk]

constraints are independent 
samples from known 𝒟i

 ?Θ(log mn)

Q: What makes online 
integer covering 
(online set cover) 
harder than offline?
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Online Set Cover With a Sample
Setting: online set cover/covering IPs, with the 

advantage that the algorithm observes a uniformly 
random fraction of the constraints at the outset.

Arrivals

Sets Bought

⋅ v1 ⋅ v2⋅ v3 ⋅ v4⋅ v5 ⋅ v6 ⋅ v7⋅ v8

Samples ⋅ v8 ⋅ v3 ⋅ v2 ⋅ v6 ⋅ v7

Theorem: LearnOrCover can solve online set 
cover with an  sample with an expected 
competitive ratio of .

α
O(1/α log mn)

Idea: run LearnOrCover on 
the sampled constraints in a 
random order. The potential 

 permits the cost of the 
adversarial portion to be 
charged to the sampled 
portion, in expectation.

Φ



Prophet Online Set Cover

Arrivals

Sets Bought

⋅ v1 ⋅ v2 ⋅ v3 ⋅ v4 ⋅ v5 ⋅ v6 ⋅ v7 ⋅ v8

Setting: online set cover/covering IPs, where each 
arriving constraint  is an independent sample from 
some known distribution 

vi
𝒟i

Theorem: LearnOrCover can solve prophet 
online integer covering with an expected 
competitive ratio of .O(log mn)

Idea: Sample constraints 
from the  and run 
LearnOrCover on them. We 
can again make a coupling 
argument that charges the 
online constraints to the 
sampled ones, despite their 
arbitrary arrival order.

𝒟i

Draws ⋅ v′￼1 ⋅ v′￼2 ⋅ v′￼3 ⋅ v′￼4 ⋅ v′￼5 ⋅ v′￼6 ⋅ v′￼7 ⋅ v′￼8



In conclusion

Q: What makes online 
integer covering 
(online set cover) 
harder than offline?

Stochastic Adversarial

RO
Ad

ve
rs

ar
ia

l

Ar
riv

al
 O

rd
er

Instance

Θ(log m log n)
[Alon Awerbuch Azar Buchbinder Naor ’03]
[Korman ’04]

Θ(log mn)
[Grandoni Gupta Leonardi 

Miettinen Sankowski Singh ’08]

constraints are i.i.d. samples 
from known 𝒟 (secretary setting)

Θ(log mn)
[this talk]

(prophet setting)

constraints are independent 
samples from known 𝒟i

Θ(log mn)
[in prep]

A: Both having no 
foreknowledge of the 
instance, and facing it 
in adversarial order!



Thank you!

Questions welcome now or later: gkehne@g.harvard.edu

mailto:gkehne@g.harvard.edu

